

केन्द्रीय विद्यालय संगठन KENDRIYA VIDYALAYA SANGATHAN

शिक्षा एवं प्रशिक्षण आंचलिक संस्थान , मैसूर

ZONAL INSTITUTE OF EDUCATION AND TRAINING, MYSORE

ASSERTION & REASON AND CASE BASED QUESTIONS FOR CLASS XII MATHEMATICS

पाठ्यक्रम निदेशक / Course Director सुश्री मीनाक्षी जैन/Ms. MENAXI JAIN

के. वि. संगठन,शिक्षा एवं प्रशिक्षण का आंचलिक संस्थान, मैसूरू Deputy Commissioner & Director KVS Zonal Institute of Education and Training, Mysore

सह पाठ्यक्रम निदेशक/ Associate Course Director श्री के पी सुधाकरन/ Mr. K P Sudhakaran प्रिंसिपल, के वी नंबर 1, सी पी सी आर आई कासरगोड (एरनाकुलम संभाग) Principal, KV No1, CPCRI Kasaragod (Ernakulam Region)

> पाठ्यक्रम समन्वयक / Course Co-ordinator श्री डी श्रीनिवासुलु/Mr. D Sreenivasulu, प्रशिक्षण सहयोगी (गणित), जेड आई ई टी मैसूरु Training Associate (Mathematics), ZIET, MYSURU

DIRECTOR'S MESSAGE

The material on 'Assertion & Reason and Case based Questions for class XII Mathematics 2023-24' was prepared during the three-day online workshop by experienced teachers from the Feeder Regions namely Bangalore, Chennai, Ernakulum and Hyderabad who have invested their knowledge and expertise to complement the classroom learning experience of the students. The material will serve as an invaluable aid for self-study since it is presented in a manner that is easy to comprehend.

It is hoped that the material will be very useful for the students to perform better in the forthcoming examinations.

Mr. K P Sudhakaran, Principal, KV No.1 CPCRI Kasaragod, Ernakulam Region, as Associate Course Director, Mr. D. Sreenivasalu, Training Associate (Maths) as Course Co-ordinator, Mrs. Beena Prince, PGT(Maths), KV Port Trust and Mrs. Sreedevi PG, PGT(Maths) KV NTPC Kayamkulam, Ernakulam Region as Resource Persons and all the participant-Teachers of the workshop deserve commendations for their sincere efforts and involvement in the preparation of the material.

It is hoped that the material on 'Assertion & Reason and Case based Questions for class XII Mathematics 2023-24' prepared by experienced teachers will be found useful by teachers and students during their preparations for class XII.

Wishing you all the very best in your academic journey!

MENAXI JAIN Director

CONTENT DEVELOPMENT TEAM (PGT-MATHEMATICS)

S N	Name of the PGT (Mr./Mrs./Ms.)	POST AND SUBJECT	Name of KV	REGION
			KV PORT TRUST NO. 3	
1	Mrs.BEENA PRINCE	PGT(Maths)	КОСНІ	ERNAKULAM
2	Mrs.SREEDEVI P G	PGT(Maths)	K V NTPC KAYAMKULAM	ERNAKULAM

LIST OF PARTICIPANTS

S N	Name of the PGT (Mr./Mrs./Ms.)	POST AND SUBJECT	Name of KV	REGION
1	Mr HARIKRISHNAN R	PGT(Maths)	K V CRPF PERINGOME	
2	Mrs. LALY POULOSE KOIKKARA	PGT(Maths)	K V KANJIKODE	
3	Mrs. A RAJALAKSHMI	PGT(Maths)	K V No.1 PALAKKAD	
4	Mrs. RAMA DEVI M	PGT(Maths)	K V RAMAVARMAPURAM	ERNAKULAM
5	Mrs. JAYA S	PGT(Maths)	K V ERNAKULAM	
6	Mr.SREEKUMAR R	PGT(Maths)	K V ADOOR(SHIFT II)	
7	Mrs. BEENA JOSEPH	PGT(Maths)	K V CRPF PALLIPURAM	
8	Mr.G KISHORE	PGT(Maths)	GACHIBOWLI	
9	Mrs. CHUNDURU HANUMAYAMMA	PGT(Maths)	GUNTUR -SHIFT 1	
10	Mr J SATYANARAYANA	PGT(Maths)	MACHILIPATNAM	
11			NO.1, SNPURAM,	
11	SRI KAMLESH VIPIN JOSHI	PGT(Maths)		HYDERABAD
12 13	Mr A RAVI KUMAR Mr. REVILLA RAVI KUMAR	PGT(Maths)	NALGONDA	
13	Mr.Thirumala Narsimha	PGT(Maths) PGT(Maths)	GOLCONDA NO.1 GOLCONDA NO.2	
14	Mrs. LEENA JOHN	PGT(Maths)	KV No.1 Jalahlli West	
16	Mrs LETHAKUMARI. P	PGT(Maths)	ASC BANGALORE	
17	Mrs. JYOTI SINGH	PGT(Maths)	CRPF YELAHANKA	
18	DR MUGITHI SREEDHAR	PGT(Maths)	BELLARI	BENGALURU
19	Mr.MORDHWAJ	PGT(Maths)	HASSAN	
20	Mr.JASEER K P	PGT(Maths)	NO.2, MANGALURU	
21	MR. BANSHI LAL PATEL	PGT(Maths)	NO. 3 MACHHE BELAGAVI	
22	Smt.G.SABITHA	PGT(Maths)	HVF AVADI	
23	Sh. MAHADEVAN K	PGT(Maths)	МІЛАМВАККАМ	
24	Mr SURINDER KUMAR	PGT(Maths)	ARAKKONAM	
25	Mrs.P RAMALAKSHMI	PGT(Maths)	MADURAI NO.1	CHENNAI
26	Smt. R.ANKAYARKANNI	PGT(Maths)	PONDICHERY NO.1 (Shift - I)	
27	Mr.T. SELVAM	PGT(Maths)	SIVAGANGA	
28	Mr. S. JAYARAMAN	PGT(Maths)	No1, OE, TIRUCHIRAPALLI	

INDEX

S.NO	CHAPTER/CONTENT	Page Number
1	Curriculum	1-3
2	Relations and Functions	4 - 17
3	Inverse Trigonometric Functions	18 - 26
4	Matrices	27 - 41
5	Determinants	42 - 59
6	Continuity And Differentiability	60 - 75
7	Application of Derivatives	76 - 91
8	Integrals	92 - 103
9	Application of Integrals	104 - 118
10	Differential Equations	119 - 128
11	Vectors	129 – 138
12	Three Dimentional Geometry	139 - 148
13	Linear Programming	149 - 162
14	Probability	163 - 180

SYLLABUS MATHEMATICS (XII) (Code No. 041) Session – 2023-24

No.	Units	Marks
I.	Relations and Functions	08
II.	Algebra	10
III.	Calculus	35
IV.	Vectors and Three - Dimensional Geometry	14
V.	Linear Programming	05
VI.	Probability	08
	TOTAL	80
	Internal Assessment	20

Unit-I: Relations and Functions

1. Relations and Functions

Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions.

2. Inverse Trigonometric Functions

Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices

Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operations on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Non-commutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants

Determinant of a square matrix (up to 3×3 matrices), minors, co-factors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.

Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, chain rule, derivative of inverse trigonometric functions, like x, $\cos^{-1} x$ and $\tan^{-1} x$, derivative of implicit functions. Concept of exponential and logarithmic functions.

Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives.

2. Applications of Derivatives

Applications of derivatives: rate of change of quantities, increasing/decreasing functions, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

$$\int \frac{dx}{x^2 \pm a^2}, \quad \int \frac{dx}{a^2 - x^2}, \quad \int \frac{dx}{\sqrt{x^2 \pm a^2}}, \quad \int \frac{dx}{\sqrt{a^2 - x^2}}, \quad \int \sqrt{x^2 \pm a^2} \, dx, \quad \int \sqrt{a^2 - x^2} \, dx, \quad \int \sqrt{a^2 - x^2} \, dx, \quad \int \sqrt{a^2 - x^2} \, dx, \quad \int \frac{px + q}{\sqrt{ax^2 + bx + c}} \, dx, \quad \int \frac{px + q}{\sqrt{ax^2 + bx + c}} \, dx$$

Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/ parabolas/ellipses (in standard form only)

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

 $\frac{dy}{dx} + py = q$, where p and q are functions of x or constants. $\frac{dy}{dx} + px = q$, where p and q are functions of y or constants.

Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors.

2. Three - dimensional Geometry

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, skew lines, shortest distance between two lines. Angle between two lines.

Unit-V: Linear Programming

1. Linear Programming

Introduction, related terminology such as constraints, objective function, optimization, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes' theorem, Random variable and its probability distribution, mean of random variable.

CHAPTER: RELATIONS AND FUNCTIONS

ASSERTION AND REASONING QUESTIONS

r	
	 In the following question a statement of Assertion (A) is followed by a statement of reason (R). Pick the correct option: A. Both A and R are true and R is the correct explanation of A. B. Both A and R are true but R is not the correct explanation of A. C. A is true but R is false. D. A is false but R is true
1	 Assertion (A): If n (A) =p and n (B) = q then the number of relations from A to B is 2^{pq} Reason (R) : A relation from A to B is a subset of A x B
2	 Assertion (A): The relation R in the set A = {1, 2, 3, 4, 5, 6} defined as R={ (x, y) : y is divisible by x} is not an equivalence relation. Reason (R) :The relation R will be an equivalence relation, if it is reflexive, symmetric and transitive.
3	Assertion (A): If R is the relation defined in set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b) : b = a + 1\}$, then R is reflexive Reason (R) : The relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is symmetric.
4	Assertion (A) : A relation R = { (1,1),(1,2),(2,2),(2,3)(3,3) } defined on the set A={1,2,3} is reflexive. Reason (R) : A relation R on the set A is reflexive if $(a,a) \in R$, for all $a \in A$
5	Assertion (A): If R is the relation in the set A= $\{1, 2, 3, 4, 5\}$ given by R= $\{(a, b): a - b \text{ is even}\}$ R is an equivalence relation. Reason (R) : All elements of $\{1, 3, 5\}$ are related to all elements of $\{2, 4\}$
6	 Assertion (A): The function f :R*→R* defined by f(x) = 1/x is one-one and onto, where R* is the set of all non-zero real numbers. Reason (R) : The function g: N → R* defined by f(x) = 1/x one-one and onto.

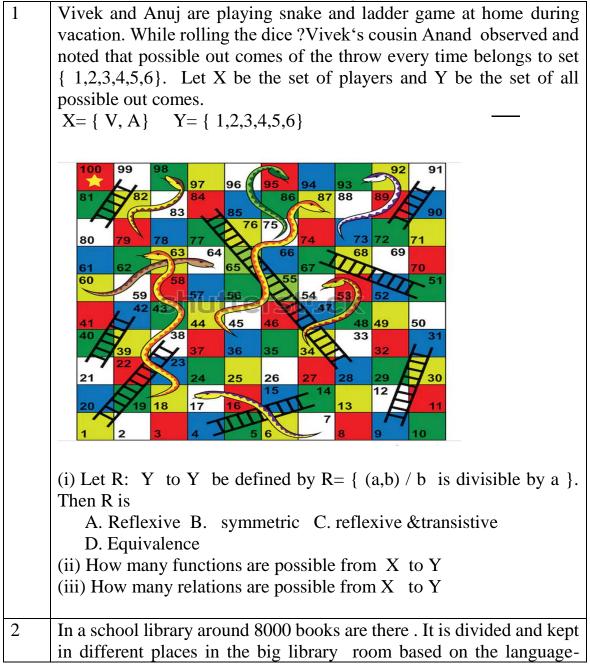
7	Assertion (A): A relation R ={ (1,1),(1,2),(2,2),(2,3)(3,3)}defined on the set A={1,2,3} is symmetric Reason (R) : A relation R on the set A is symmetric if (a,b) $\in R \Longrightarrow (b, a) \in R$
8	 Assertion (A): Let f : R →R defined by f(x) = x² + 1. Then pre-images of 17 are ±4. Reason (R) : A function f : A→ B is called a one-one function, if distinct elements of A have distinct images in B.
9	Assertion (A): The function $f: R \rightarrow R$ given by $f(x) = x^3$ is injective.Reason (R): The function $f: X \rightarrow Y$ is injective, if $f(x) = f(y) \Rightarrow x = y$ for all $x, y \in X$
10	Assertion (A): The function f: $R \rightarrow R$, $f(x)= x $ is not one-one Reason (R) : The function $f(x)= x $ is not onto
11	Assertion (A): Let $A = \{2, 4, 6\}$ and $B = \{3, 5, 7, 9\}$ and defined a function $f = \{(2, 3), (4, 5), (6, 7)\}$ from A to B. Then, f is not onto.Reason (R): A function $f : A \rightarrow B$ said to be onto, if every element of B is the image of some elements of A under f.
12	Assertion (A): Let a relation R defined from set B to B such that $B = \{1, 2, 3, 4\}$.and $R = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$, then R is transitive.Reason (R) : A relation R in set A is called transitive, if $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R, \forall a, b, c \in A$
13.	 Assertion (A): A function cap f : X → Y is said to be one-one and onto (or bijective) Reason (R) : if f is both one-one and onto.
14	 Assertion (A): The relation R on the set N×N, defined by (a, b) R (c, d) ⇔ a+d = b+c for all (a, b), (c, d) ∈ N×N is an equivalence relation Reason (R) : Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive

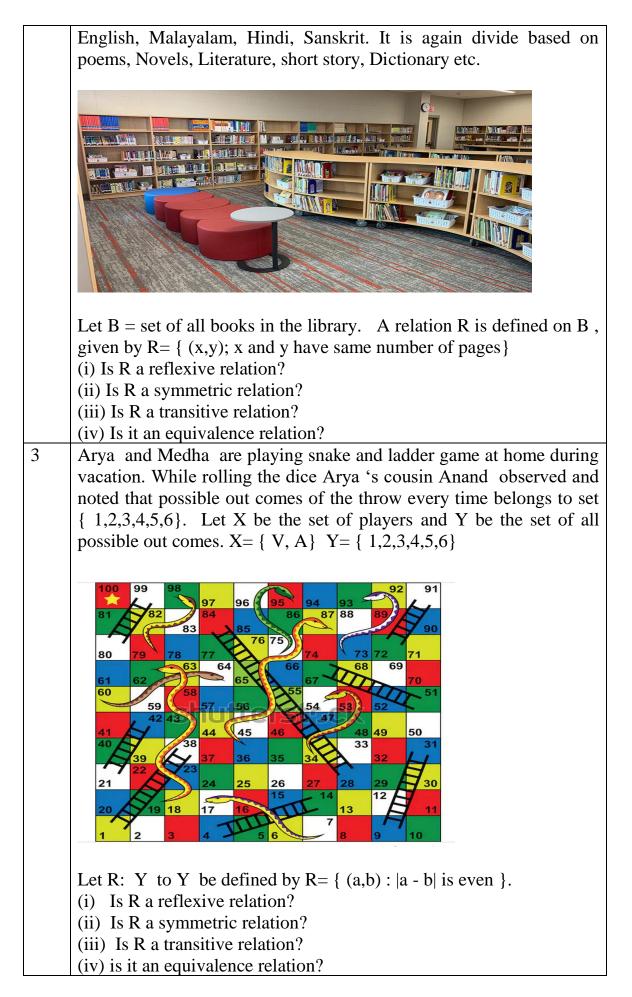
15	Assertion (A) : The function $f : N \rightarrow N$ given by $f(x) = 2x$ is not onto
IJ	Reason(R) :The function f is onto, $f(x) = f(y) \Rightarrow 2x = 2y \Rightarrow x = y$.
16	Assertion (A) : Let L be the set of all lines in a plane and R be the relation in L defined as $R=\{(L_1, L_2) : L_1, is perpendicular to L_2,).$ R is not an equivalence relation.
	Reason (R) : R is symmetric but neither reflexive nor transitive.
17	Assertion (A): { $(T_1, T_2,) : T_1$, is congruent to T_2 }. Then R is an equivalence relation. Reason (R) : Any relation R is an equivalence relation, if it is reflexive, symmetric and transitive
18	Assertion (A) : The relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)\}$ is reflexive but Neither symmetric nor transitive.
	Reason (R) : R is not symmetric as $(1, 2) \in R$ but $(2,1) \notin R$. Similarly, R is not transitive as $(1,2) \in R$ and $(2,3) \in R$ but $(1, 3) \notin R$.
19	Assertion (A) : Show that the relation R in the set A of all the books in a library of a college, given by $R = \{ (x, y) : x \text{ and } y \text{ have the same number of pages } \}$ is not an equivalence relation.
	Reason (R) : Since R is reflexive, symmetric and transitive.
20	 Assertion (A) : The relation R in R defined as R = {(a, b) : a ≤ b)} is not an equivalence relation. Reason (R) : Since R is not reflexive but it is symmetric and transitive.
21	Assertion (A) : The relation R in R defined as $R = \{(a, b) : a \le b^2\}$ is not anequivalence relation.Reason (R) : Since R is neither reflexive nor symmetric, nor transitive.

22	Assertion (A) : Set A has 3 elements and set B has 5 elements then number
	of injective function from set A to set B will be 60
	Reason (R) : If set A has m elements and set B has n elements where
	$n \ge m$, the number of injective function is ${}^{n}p_{m}$
23	Assertion (A) : A function $f(x) = \cos x$, $x \in [0, 3\pi/2]$ is bijective Reason (R) : For one - one function each elements in domain has unique image in codomain
24	Assertion (A): The function $R \rightarrow R$ defined by $f(x) = IxI$ is neither one one
	nor onto
	Reason (R) : The signum function $R \rightarrow R$ given by $f(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$ bijective function
25	Assertion (A): The possible number of reflexive relations of set A whose $n(A) = 4$ is 2^{12}
	Reason (R) : Number of reflexive relation on a set contain n elements is 2^{n^2-n}
	EXCERCISE
1	Assertion (A): The relation R in the set Z of integers given by $R=\{(a, b): 2 \text{ divides } a-b \}$ is reflexive and symmetric.
	Reason (R): R is reflexive, as 2 divides (a - a) for all $a \in \mathbb{Z}$.
2	Assertion (A) : Let R be the relation defined in the set $A = \{1, 2, 3, 4, 5, 6, 7\}$ by $R = \{(a, b) : both and b are$ either odd or even). R is equivalence relation.
	Reason (R) : Since R is reflexive, symmetric but R is not transitive.
3	Assertion (A) : Let R be the relation in the set $\{1, 2, 3, 4\}$ given by R = $\{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$. R is not an equivalence relation.
	Reason (R) : R is not Reflexive relation but it is symmetric and transitive

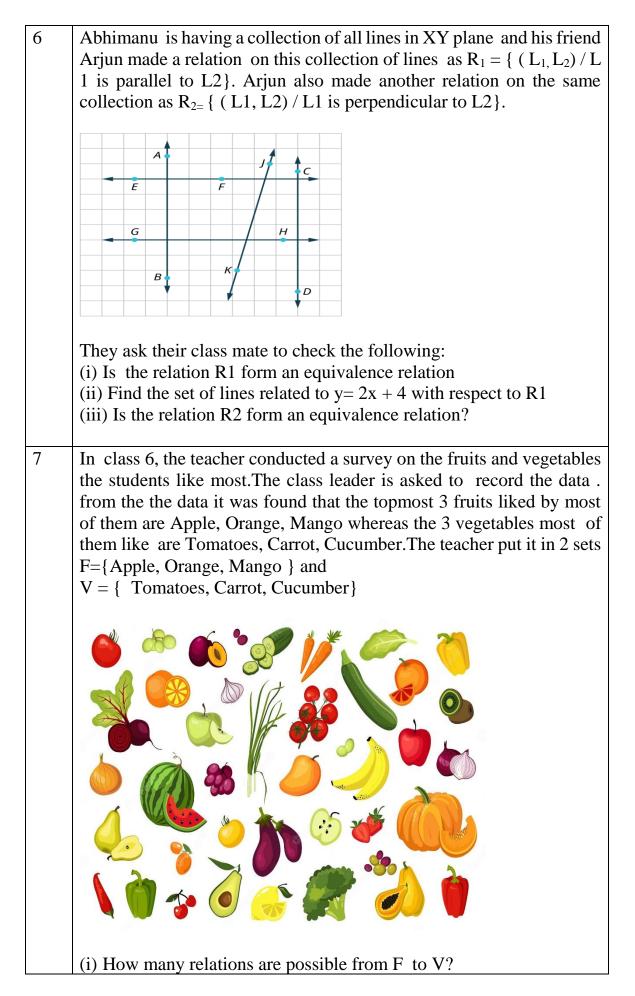
4	Assertion (A) : If $n(A) = p$ and $n(B) = q$. The number of relation from set A to B is pq.
	Reason (R): The number of subset of $A \times B$ is 2^{pq}
5.	Assertion (A): Domain and Range of a relation $R = \{(x, \mathcal{Y}): x - 2\mathcal{Y} = 0\}$ defined on $A = \{1, 2, 3, 4\}$ are respectively $\{1, 2, 3, 4\}$ and $\{2, 4, 6, 8\}$
	Reason(R): Domain and Range of a relation R are respectively the sets $\{a: a \in A \text{ and } (a, b) \in R.\}$ and $\{b: b \in A \text{ and } (a, b) \in R\}$
6	Assertion (A) :Let R be any relation in the set A of human beings in a town at a particular time If R={ (x, y) : x is wife of y}, then R is reflexive.
	Reason (R): If $R = \{(x, y) : x \text{ is father of } y\}$, then R is neither reflexive nor symmetric nor transitive.
7	Assertion (A): If X = { 0, 1, 2 } and the function $f: X \rightarrow Y$ defined by $f(x) = x^2 - 2$ is surjection then Y = { -2, -1, 0 }
	Reason(R): If $f: X \to Y$ is surjective if $f(X) = Y$

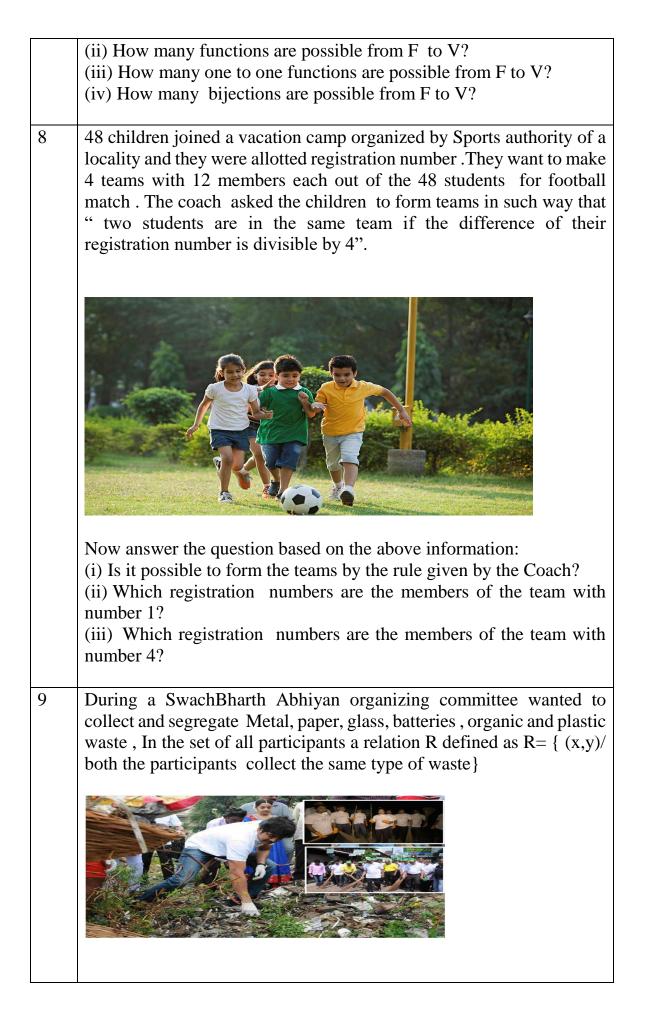
•


ANSWER KEY


1	
1.	Answer: A Solution: A is true - No of elements of $AXB = pxg$. So the number of
	Solution: A is true - No of elements of $AXB = pxq$, So the number of relations from A to B is 2^{pq}
	R is true – every relation from A to B is a sub set of AXB
2.	Answer : A
	Solution: A is true-R is reflexive and transitive but not symmetric
	ie (2,4)∈R⇒ (4,2)∈R
-	R-true- Definition of an equivalence relation
3.	Answer :D
	Solution : A is false $-(x,x) \notin \mathbb{R}$
<u> </u>	R is true - (1, 2)∈ R⇒(2, 1) ∈ R
4.	Answer: A
	Solution: A is true - $(a,a) \in R$, for all $a \in A$
~	R is true – Correct explanation for reflexive relation
5.	Answer: C
	Solution: A is true- Since it an equivalence relation
	R is false – the modulus of difference between the two
6	elements from each of these two subsets will not be even Answer:C
6.	
	Soluion: A is true – Every elements has distinct images and range is R* R is false – g is one one but range is a subset of R*
7.	Answer: D
/.	Solution: A is false - $(2,3)\in \mathbb{R} \Rightarrow (3,2)\in \mathbb{R}$
	R is true - A relation R on the set A is symmetric if
	$(a,b) \in \mathbb{R} \longrightarrow (b, a) \in \mathbb{R}$
8.	Answer: B
	Solution: A is true - $x^2 + 1 = 17$, $x^2 = 16$, $x = \pm 4$
	R is true - but reason is not the correct explanation of A
9.	Answer: A
	Solution : A is true $-f(x_1) = f(x_2) \Rightarrow x_1 = x_2$
	R is true – and is the correct explanation of A
10.	Answer: B
	Solution: A is true $- f(1) = f(-1)=1$, so not one one
	R is true – range of $f = [0, \propto) \subset R$ not a correct explanation of A
11.	Answer: A
	Solution: A is true – Range of $f \subset B$
10	R is true - Range of $f = B$ and reason is correct
12.	Answer: A $(1 \circ) P (2 \circ) P \Rightarrow (1 \circ) F$
	Solution: A is true - $(1,3)\in\mathbb{R}, (3,1)\in\mathbb{R} \Rightarrow (1,1)\in\mathbb{R}$
	R is true – correct definition of transitive relation

13.	Answer: A
15.	Solution: A is true
	R is true with correct reason
14.	Answer: A
1 1.	Solution: A is true- R is if it is reflexive, symmetric and transitive
	R is true and reason is correct
15.	Answer: C
10.	Solution: A is true – range is a subset of N
	R is false - not the definition of onto
16.	Answer: A
	Solution : A is true - $(L1, L1) \notin R$ – not reflexive and $(L1, L2) \in R$, $(L1, L3) \notin R$ – $(L2, L3) \in R \Rightarrow$ not transitive but symmetric
	R is true – reason is correct
17.	Answer: A
	Solution: A is true
	R is true and reason is correct
18.	Answer: A
	Solution: A is true
	R is true and reason is correct
19.	Answer: D
17.	Solution : A is false – R is an equivalence relation
	R is true
20.	Answer: C
	Solution: A is true- not symmetric, ie $(2,4) \in \mathbb{R}$ but $(4,2) \notin \mathbb{R}$
	R is false – R is reflexive and transitive but it is not symmetric.
21.	Answer: A
	Solution: A is true-not reflexive ,ie(1/2,1/2) $\notin \mathbb{R}$ -not symmetric (1,2) $\in \mathbb{R}$
	but (2,1) $\notin \mathbb{R}$ - not transitive (3,2) $\in \mathbb{R}$, (2,1.5) $\in \mathbb{R}$ but (3,1.5) $\notin \mathbb{R}$
	R is true – reason is correct
22.	Answer: A
	Solution: A is true ${}^5p_3 = 60$
	R is true
23.	Answer: D
	Solution: A is false- $\cos \frac{\pi}{2} = 0 = \cos \frac{3\pi}{2}$
	R is true
24.	Answer:C
	Solution: A is true- $f(1) = f(-1)=1$, so not one one and range of $f = [0, \infty)$
	⊂R
	R is False– $f(1) = f(2)=1$, so not one one and range of $f = \{0, 1, -1\}$
	⊂R
25.	Answer:A
	Solution: A is true
	R is true and R is the correct reason


	EXERCISE
1.	Answer:B
2.	Answer:C
3.	Answer: C
4.	Answer: D
5.	Answer: D
6.	Answer: D –
7.	Answer:A


CASE STUDY BASED QUESTIONS

4	A scout master wants to make different groups of students so that they can be given different tasks. Students started making groups with their friends, then the scout master interfere and told them to make groups as per a rule "a student will make group with roll number in such a way that the difference of roll number is divisible by 3.
	 (i) Write a relation R in set-builder form for the rule told by the scout master. (ii) Which roll number of students will be in the group of students with roll number 2, if there are 30 students in the class? (iii) Which roll number of students will be in the group of students with roll number 3, if there are 30 students in the class?
5	Mohan and Ritu were playing a game .The rule for the game is that when Mohan plots a point say P on a Cartesian plane, then Ritu has to find points on the plane in such a way the distance of the points from the origin O is same as that of the distance between the origin and the point P(ie; OP). Mohan's sister Avantika put the rule of the game in set form as $R = \{ (P, Q) : OP = OQ \}$
	 (i)Is R a reflexive relation? (ii) Is R a symmetric relation? (iii) Is R a transitive relation? (iv) is it an equivalence relation? (v) what figure Ritu get if She joins all such points

	 Based on the given information answer the following: (i) Check whether R is an Equivalence relation in the set of all participants (ii) In how many groups the participants are divided on the basis of their waste collection, assume that there are participants to collect all type of the waste.
10	In a master chef competition final round 3 chef were selected and Judges assigned three dishes D= { D1, D2, D3} to the participants P= {P1,P2, P3} and asked them to prepare dishes as per the folowing rules: Rule A :everybody has to prepare exactly one dish Rule B:no 2 paricipants is allowed to prepare same dish Rule C : all the dish must be prepared in the competition
	Answer the following in the context of functions (i) In how many ways all participants can choose a Dish as per rule A? (ii) In how many ways everybody can choose a dish to prepare as per the rule B? (iii) How many ways all participants can prepare exactly one dish as per rule C?

ANSWER KEY

1	SOLUTIONS:
	(i) C (ii) 6^2 (iii) 2^{12}
2	SOLUTIONS/ANS:
	(i)Yes (ii) yes (iii) yes (iv) yes
3	SOLUTIONS/ANS:
	(i) Yes (ii) yes (iii) yes (iv) yes
4	SOLUTIONS/ANS:
	(i) $R = \{ (a, b)/ a - b \text{ is divisible by 3 } \}$
	(ii) $\{2, 5, 8, 11, 14, \ldots\}$
	(iii) {3,6,9,12,15}
5	SOLUTIONS/ANS:
	(i) Yes (ii) yes (iii) yes (iv) yes (v) circle
6	SOLUTIONS/ANS:
	(i) R1 is reflexive, symmetric, transistive so, equivalence
	(ii) $y = 2x + c$; c is any arbitrary constant
	(iii) No(R is not reflexive, transistive but symmetric)
7	SOLUTIONS/ANS:
	(i) 2^9
	(ii) 3 ³
	(iii) $3!/(3-3)! = 3! = 6$
	(iv) 3!
8	SOLUTIONS/ANS:
	(i) Yes
	(ii) $\{1, 5, 9, 13, 17, 21, \dots\}$
	(iii) { 4, 8, 12, 16, \dots }
9	SOLUTIONS/ANS:
-	(i) Yes, it is an equivalence relation
	(ii) 6 groups
10	SOLUTIONS/ANS:
	(i) No of function $3 \times 3 \times 3 = 27$
	(ii) No of one to one functions from D to $P=3!$
	(iii) No of onto functions from D to $P = 3!$

CHAPTER : INVERSE TRIGONOMETRIC FUNCTIONS

0.11	ASSERTION AND REASONING QUESTIONS
Q.No	Questions
1	Assertion(A): The range of the function $f(x)=2\sin^{-1} x + 3\pi/2$, where $x \in [-1,1]$, is $[\pi/2, 5\pi/2]$.
	Reason(R) : The range of the principal value branch of $\sin^{-1} x$ is $[0,\pi]$
	Assertion (A): Maximum value of $(\cos^{-1}x)^2$ is π^2
2	Reason(R): Range of principal value branch of $\cos^{-1}x$ is $[-\pi/2, \pi/2]$.
	Assertion (A): Range of $\sin^{-1}x + 2\cos^{-1}x$ is $[0,\pi]$
3	Reason(R): The range of the principal value branch of $\sin^{-1} x$ is $[-\pi/2, \pi/2]$
4	Assertion(A): All trigonometric functions have their inverses over their respective domains
	Reason(R): The inverse of $\tan^{-1}x$ exists for some $x \in \mathbb{R}$
5	Assertion(A): The value of $\tan^{-1}\sqrt{3} - \cot^{-1}(-\sqrt{3}) = -\pi/2$
	Reason(R): The principal value branch of $\sin^{-1} x$ is $[\pi/2, \pi/2]$ and the principal value branch of $\cos^{-1}x$ is $[0,\pi]$
6	Assertion(A) : The principal value of $\sin^{-1}(1/\sqrt{2}) = \pi/4$
U	Reason(R): The principal value branch of $\sin^{-1} x$ is $[\pi/2, \pi/2]$ and $\sin(\pi/4)=1/\sqrt{2}$
7	Assertion(A): The value of $\sin^{-1}(\sin 3\pi/5)=3\pi/5$
,	Reason(R): Sin ⁻¹ (Sin x)=x, if $x \in [-\pi/2, \pi/2]$

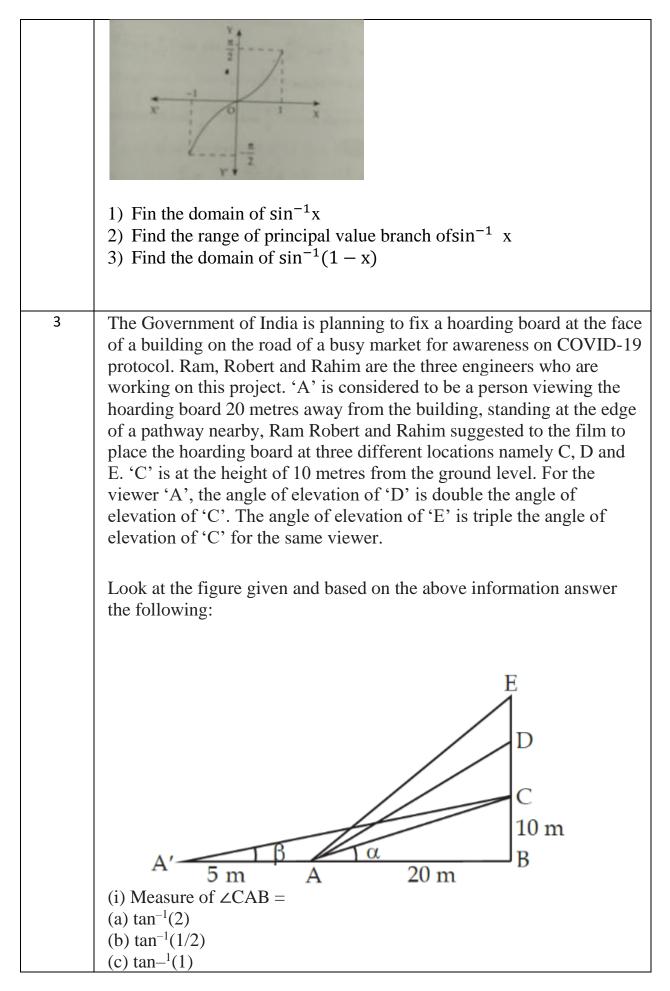
ASSERTION AND REASONING QUESTIONS

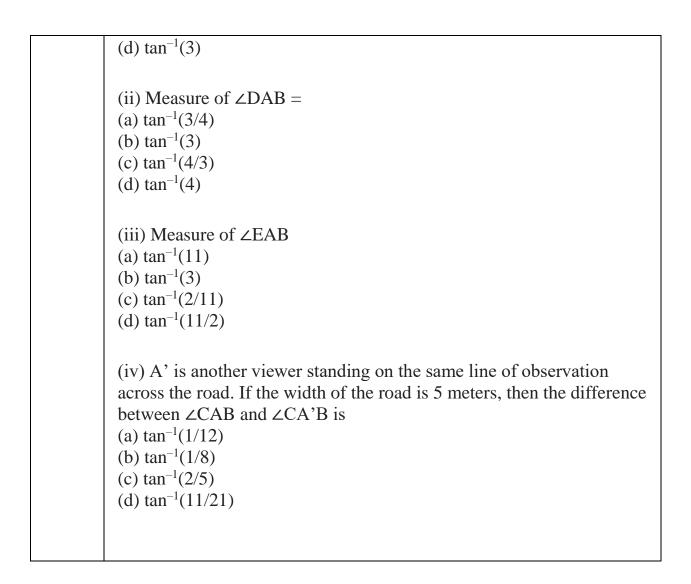
8	Assertion(A): The value of $\tan^{-1}[2\sin(2\cos^{-1}\frac{\sqrt{3}}{2})]=\pi/3$
	Reason(R): The range of principal value branch of \cot^{-1} is $(0, \pi)$
9	Assertion(A): $\sin^{-1}x = (\sin x)^{-1}$
7	Reason(R): Any value in the range of principal value branch is principal value of that inverse trigonometric function.
10	Assertion(A): The domain of the function sec ⁻¹ 2x is $(-\infty, -1/2] \cup [1/2, \infty)$
	Reason(R): Sec ⁻¹ (-2) = - $\pi/4$
11	Assertion(A): If $\tan^{-1}(\sin(-\pi/2)) = -\pi/4$ Reason(R): $\cos^{-1}(1/2) = \pi/3$
10	Assertion(A): $\cos^{-1}(\cos 13\pi/6) = \pi/6$
12	Reason(R): $\cos(13\pi/6) = \cos \pi/6$
13	Assertion (A): $tan(1) > tan^{-1}(1)$
15	Reason(R): tanx is an increasing function in $(-\pi/2, \pi/2)$ of the Assertion(A)
14	Assertion(A): The principal value of $\cos^{-1}(\frac{-1}{2})$ is $\frac{2\pi}{3}$
	Reason(R): The principal value of cos^{-1} x lies between $(0,\pi)$
15	Assertion(A): the principal value of $cos^{-1}(cos\frac{7\pi}{6})$ is $\frac{5\pi}{6}$
	Reason(R): $cos^{-1}(cos x) = x \forall x \in [o, \pi]$
16	Assertion(A): The value of sin $\left[\frac{\pi}{3} - sin^{-1}(\frac{-1}{2})\right]$ is 1
	Reason(R): The principal value of $sin^{-1}(\frac{-\sqrt{3}}{2}) = \frac{-\pi}{3}$
17	Assertion(A): The domain of the function $sin^{-1} (2x - 1)$ is [0,1]

	Reason(R): The domain of the function $sin^{-1} \times is[-1, 1]$
18	Assertion(A): If $0 \le x \le \pi$, then the value of $sin^{-1}(\cos x)$ is $(\frac{\pi}{2} - x)$
	Reason(R): $sin^{-1}(sin x) = x, \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
19	Assertion(A): The principal value of $tan^{-1} (tan \frac{3\pi}{5})$ is $-\frac{2\pi}{5}$
	Reason(R): $tan^{-1}(tan x) = x \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
20	Assertion (A): Inverse of sine function exist in $[0, \pi]$
	Reason(R): sin^{-1} function becomes bijective if we restrict the domain to [-1,1]
21	Assertion(A): The principal value of tan^{-1} (-1) is $-\frac{\pi}{4}$
	Reason(R): The range of principal value branch of $tan^{-1}is$ $(\frac{-\pi}{2}, \frac{\pi}{2})$ and $tan^{-1}(-x) = -tan^{-1}x$
22	Assertion(A): Principal value of sin^{-1} (sin $\frac{17\pi}{18}$) is $\frac{\pi}{18}$
	Reason(R): Domain of principal value branch of sin^{-1} is [-1, 1]
23	Assertion(A): The value of $tan^{-1}\sqrt{3} - cot^{-1}(-\sqrt{3})$ is $\frac{-\pi}{2}$
	Reason(R): The principal branch of tan^{-1} is $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ and cot^{-1} (-x) $=\pi - cot^{-1}$ x
24	Assertion : $\sin^{-1}(\sin\frac{2\pi}{3})$ is $\frac{2\pi}{3}$
	Reason : $\sin^{-1}(\sin\theta) = \theta, \ \theta \in [\frac{-\pi}{2}, \frac{\pi}{2}]$
25	Assertion(A): principal value of $\cos^{-1} \cos(-680) = \frac{2\pi}{9}$
	Reason(R) : $\cos^{-1}(-x) = \pi - \cos^{-1}x$

ANSWER KEY

Q. No	ASSERTION REASON SOLUTIONS
1	Solution: $-\pi/2 \le \sin^{-1} x \le \pi/2$ $-\pi \le 2 \sin^{-1} x \le \pi$ $\pi/2 \le 2 \sin^{-1} x + 3\pi/2 \le 5\pi/2$. Hence assertion is true The range of the principal value branch of $\sin^{-1} x$ is [$-\pi/2,\pi/2$]. Hence Reason R is False. Assertion(A) is true Reason(R) is False. Hence correct option is c.
2	Maximum value of $(\cos^{-1}x)$ is π Maximum value of $(\cos^{-1}x)^2$ is π^2 Hence assertion is true Range of principal value branch of $\cos^{-1}x$ is $[0, \pi]$ Hence Reason R is False. Assertion(A) is true Reason(R) is False. Hence correct option is c.
3	Assertion(A) is false, since Range of $\sin^{-1}x+2\cos^{-1}x$ is [- $\pi/2$, $5\pi/2$]. Reason(R) is true. Hence correct option is d.
4	Assertion(A) is false, since All trigonometric functions have their inverses over their principal branches Reason(R) is true. Hence correct option is d.
5	$\tan^{-1}\sqrt{3} \cdot \cot^{-1}(-\sqrt{3}) = \pi/3 \cdot (\pi - \pi/6)$ = $-\pi/2$ Both Assertion (A) and Reason(R) are true and Reason(R) is the correct explanation of the Assertion(A) So correct option is a
6	Both Assertion (A)and Reason(R)are true and Reason(R)is the correct explanation of the Assertion(A)So correct option is a
7	Assertion (A) is false and Reason (R) is true. So correct option is d $\sin^{-1}(\sin 3\pi/5) = \sin^{-1}[\sin (\pi - 3\pi/5)] = \sin^{-1}[\sin (2\pi/5) = 2\pi/5]$
8	Both Assertion (A) and Reason(R) are true but Reason(R) is not the correct explanation of the Assertion(A).SoCorrect option:b
9	Assertion (A) is false and Reason (R) is true. So correct option is d
10	$\sec^{-1}(-2) = 2\pi/3$ Hence Reason R is False.


	The domain of the function sec ⁻¹ x is $(-\infty, -1] \cup [1, \infty)$. So the
	domain of the function sec ⁻¹ 2x is $(-\infty, -1/2] \cup [1/2, \infty)$.
	So Assertion(A) is true. Hence correct option is c.
11	$\tan^{-1}(\sin(-\pi/2)) = \tan^{-1}(-\sin(\pi/2)) = \tan^{-1}(-1) = -\pi/4$
	and $\cos^{-1}(1/2) = \pi/3$
	So both Assertion and Reason are correct.But Reason(R) is not
	the correct explanation of the Assertion(A).So correct option is b
	$\cos(13\pi/6) = \cos(2\pi + \pi/6) = \cos \pi/6$
10	$\cos^{-1}(\cos 13\pi/6) = \cos^{-1}(\cos \pi/6) = \pi/6$
12	So both Assertion and Reason are correct
	andReason(R) is the correct explanation of the Assertion(A). So
	option a is correct
	tanx is an increasing function in $(-\pi/2, \pi/2)$ 1 $>\pi/4$
	$\tan 1 > \tan \pi/4$
	tan1>1
	since $1 > \pi/4$
13	$\tan 1 > 1 > \pi/4$
	$\tan 1 > 1 > \tan^{-1}(1)$
	So $tan(1) > tan^{-1}(1)$
	So both Assertion and Reason are correct
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a.
	$\cos^{-1}(\frac{-1}{2}) = \pi - \cos^{-1}(1/2) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$
14	
11	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a. $-1\left(\begin{array}{cc} 7\pi \end{array}\right) -1\left(\begin{array}{cc} 2\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}\right) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(\begin{array}{cc} 5\pi \end{array}) -1\left(1\left(1\left(1\right)) -1\left(1\left(1\right)) -1\left(1\left(1)) -1\left(1\left(1\right)) -1\left(1\left(1\right)) -1\left(1) -1$
	$\cos^{-1}\left(\cos\frac{7\pi}{6}\right) = -\cos^{-1}\left(\cos(2\pi - \frac{5\pi}{6})\right) = \cos^{-1}\left(\cos\frac{5\pi}{6}\right) = \frac{5\pi}{6} \in$
15	(0, π)
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a.
	$\ln \left[\frac{\pi}{3} - \sin^{-1}(\sin(\frac{-\pi}{6}))\right] = \sin \left(\frac{\pi}{3} - (\frac{-\pi}{6})\right) = \sin \frac{\pi}{2} = 1$
	Also $\sin^{-1}(\frac{-\sqrt{3}}{2}) = \sin^{-1}(\sin(\frac{-\pi}{3})) = \frac{-\pi}{3}$
16	Z 5 5
	So both Assertion and Reason are correct.But Reason(R) is not
	the correct explanation of the Assertion(A).So correct option is b
	$\frac{\text{Solution:}}{-1 \le 2x - 1 \le 1},$
	$-1 \le 2x - 1 \le 1$, $-1 + 1 \le 2x \le 1 + 1$
17	$\begin{array}{c} -1 + 1 \leq 2x \leq 1 + 1 \\ 0 \leq x \leq 1 \end{array}$
	Hence Reason(R) is the correct explanation


	Solution:
18	$0 \le x \le \pi$
	implies $o \ge -x \ge -\pi$
	$-\pi \leq -x \leq 0$
	$\frac{\frac{\pi}{2} - \pi \le \frac{\pi}{2} - x \le \frac{\pi}{2} - 0}{\frac{-\pi}{2} \le \frac{\pi}{2} - x \le \frac{\pi}{2}}$
	$\frac{-\pi}{2} \le \frac{\pi}{2} -\mathbf{X} \le \frac{\pi}{2}$
	$\sin^{-1}(\cos x) = \sin^{-1}(\sin(\frac{\pi}{2} - x)) = (\frac{\pi}{2} - x)$
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is
	$\tan^{-1}(\tan\frac{3\pi}{5})$
	$= \tan^{-1}(\tan(\pi - 2\pi/5))$
	$= \tan^{-1}(-\tan 2\pi/5) =$
19	$-\tan^{-1}\tan(2\pi/5)=$
	$-\frac{2\pi}{5}$
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a.
20	Inverse of sine function exists in $\left -\frac{\pi}{2},\frac{\pi}{2}\right $
	Assertion (A) is false and Reason (R) is true. So correct option is d
	$\tan^{-1}(-x) = -\tan^{-1}x$
	$\tan^{-1}(-1) = -\tan^{-1}_{\pi} 1$
21	$=-\frac{\pi}{4}$
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a. π
	$\sin^{-1}\left(\sin \frac{17\pi}{18}\right) = \sin^{-1}\left(\sin \pi - \frac{\pi}{18}\right)$
	$=\sin^{-1}(\sin\frac{\pi}{18})$
22	$=\frac{\pi}{18}$, since $\sin^{-1}(\sin x) = x$ for every $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
	So both Assertion and Reason are correct.But Reason(R) is not
	the correct explanation of the Assertion(A).So correct option is
	$\tan^{-1}\sqrt{3} = \frac{\pi}{3}$
	$\cot^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
22	$\tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{-\pi}{2}$
23	$\tan \sqrt{3} - \cot \left(-\sqrt{3}\right) = \frac{1}{3} - \frac{1}{6} - \frac{1}{2}$
	Hence Reason(R) is the correct explanation of the Assertion(A)
	So correct option is a.
	$\sin^{-1}(\sin^{\frac{2\pi}{2}}) = \sin^{-1}(\sin(\pi - \frac{\pi}{2}))$
24	$\sin^{-1}(\sin\frac{\pi}{2})$
	$= \pi/3$
	· · · · ·

	Assertion (A) is false and Reason (R) is true. So correct option is
	d
	$\cos^{-1}\cos(-680^{\circ})$
25	$=\cos^{-1}\cos(680^{\circ})$
	$=\cos^{-1}\cos(720^{\circ}-40^{\circ})$
	$=\cos^{-1}\cos(40^{\circ})$
	$=40^{\circ}$
	$=\frac{2\pi}{9}$
	So both Assertion and Reason are correct.But Reason(R) is not
	the correct explanation of the Assertion(A).So correct option is b

CASE BASED QUESTIONS

1	Two men on either side oaf a temple 30 m high from the level of eye observe its top at the angles of elevation α , β respectively. the distance between two men is $40\sqrt{3}$ meters and the first person and the temple is $30\sqrt{3}$ based on the information answer the following
	A TO POOL
	1) find angle CAB
	2)Find the principal value of $\sin^{-1} \sin \left(\alpha + \frac{\pi}{3}\right)$ 3) Find the principal value of $\cos^{-1} \cos \left(\alpha + \frac{\pi}{3}\right)$
2	Ram and Krishna are students of class XII. one teacher told them about inverse trigonometric functions and she sketched the graph of $\sin^{-1} x$ as follows
	Based on the above answer the following

ANSWERS(CASE BASED QUESTIONS)

1	1) $\tan \alpha = \frac{BD}{AD} = \frac{1}{\sqrt{3}} CAB = \frac{\pi}{6}$ 2) $\sin^{-1} \sin (\alpha + \frac{\pi}{3}) = \sin^{-1} \sin (\frac{5\pi}{6}) = \frac{\pi}{6}$ 3) $\cos^{-1} \cos (\alpha + \frac{\pi}{3}) = \cos^{-1} \cos(\frac{2\pi}{3}) = (\frac{2\pi}{3})$
2	Ans [-1,1]
2	
	$\left[-\frac{\pi}{2}\frac{\pi}{2}\right]$
	[0,2]
3	Answer:
	(i) b
	(ii) c
	(iii) d
	(iv) a

CHAPTER: MATRICES

ASSERTION AND REASONING QUESTIONS

	 In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both (A) and (R) are true and (R) is the correct explanation of (A). (b) Both (A) and (R) are true and (R) is not the correct explanation of (A). (c) (A) is true and (R) is false (d) (A) is false but (R) is true.
1.	Assertion(A): If $\begin{bmatrix} xy & 4 \\ z+5 & x+y \end{bmatrix} = \begin{bmatrix} 4 & w \\ 0 & 4 \end{bmatrix}$, then x=2, y =2, z = -5, and w = 4.
	Reason(R) : Two matrices are equal if their orders are same and their corresponding elements are equal.
2.	Let A and B be two symmetric matrices of order 3.
	Assertion(A): A(BA) and (AB)A are symmetric matrices.
	Reason(R): AB is symmetric matrix, if matrix multiplication of A with B is commutative.
3.	Assertion(A): If $A = \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$, then AB and BA both are defined.
	Reason(R): For two matrices A and B, the product AB is defined, if the number of columns in A is equal to the umber of rows in B.
4.	Assertion(A): Matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ is a diagonal matrix.
	Reason(R): Identity matrix of order 3 is a diagonal matrix.

5.	Assertion(A) : For any square matrix B with real number entries , $B + B^{T}$ is skew symmetric matrix and B - B^{T} is symmetric matrix .
	Reason(R) : A square matrix B can be expressed as the sum of symmetric and skew symmetric matrix.
6.	Assertion(A): If A is a skew- symmetric matrix, then A ² is a symmetric matrix.
	Reason(R): If A is a skew- symmetric matrix, then $A^{T} = -A$
7.	Let $A(\theta) = \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$
	Assertion(A) : $\left(A(\frac{\pi}{3})\right)^3 = -I$, I is identity matrix.
	Reason(R): $A(\theta_1).A(\theta_2) = A(\theta_1 + \theta_2)$
8.	Let A,B and C be three square matrices of the same order.
	Assertion (A) : If $AB = O$, then $A = O$ or $B = O$.
	Reason(R): $A+B = A+C \rightarrow B = C.$
9.	Assertion(A): If A = $\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$, is a skew-symmetric matrix
	then $x = 2$
	Reason(R): For a skew- symmetric matrix, $a_{ij} = 0$ for $I = j$.
10.	Assertion(A): $\begin{bmatrix} -7 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -7 \end{bmatrix}$ is a scalar matrix.
	Reason(R): All the elements of the principal diagonal are equal, it is called a scalar matrix.

11.	Assertion(A): $A = \begin{bmatrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \end{bmatrix}$ is a symmetric matrix.
	Then $x = 6$
	Reason(R): If A is a symmetric matrix, then $A^{T} = A$.
12.	Assertion(A): $A = \begin{bmatrix} 2 & -2 & 0 \\ 6 & 4 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 6 \\ 10 \end{bmatrix}$ then
	$(AB)^{T} = [-8 16]$
	Reason(R): $AB = [-8 \ 21]$
13.	Assertion(A) : If the matrix A is both symmetric and skew- symmetric matrix, then A is a zero matrix.
	Reason(R): $A^{T} = A$ and $A^{T} = -A$
14.	Assertion (A) : If A is a matrix of order $m \times n$, and BA^T , A^TB both are
	defined, then B is $m \times n$.
	Reason(R): The product AB is defined, then number of columns
	of A is same as number of rows of B.
15.	Let A and B are symmetric matrices of same order Assertion(A) : AB –BA is skew- symmetric
	Reason(R): AB +BA is symmetric
16.	Assertion(A): If $\begin{bmatrix} 0 & -5 & 7 \\ 5 & 2k-2 & 4 \\ -7 & -4 & 0 \end{bmatrix}$ is a skew-symmetric matrix
	then $k = 1$
	Reason(R) : In askew symmetric matrix all the principal diagonal elements are zero.
17.	Let A and B are square matrices of order 2 x 2 and 2 x 3 respectively , then
	Assertion(A): AB exists but BA does not exists

	Reason(R): If X and Y are matrices then XY exists only if
	number of columns of X and number of rows of Y are the same
18.	If $\begin{bmatrix} x + y & -2 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ 0 & 3 \end{bmatrix}$ then
	Assertion(A) : $x = -1$ and $y = 3$
	Reason(R): Any two matrices can be compared
19.	If A is a square matrix ,then
	Assertion (A): $A + A^1$ is symmetric
	Reason(R): A square matrix X is said to be symmetric if $X^1 = X$
20.	Assertion(A): The matrix $A = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix}$ is a
	$\begin{bmatrix} 1 & 0 & 3 \\ 2 & 3 & 0 \end{bmatrix}$ is a
	skew -symmetric
	Reason(R) : A square matrix is skew-symmetric if its principal
	diagonal elements are zeros
21.	Assertion(A): The square matrix $\begin{bmatrix} 3 & -2 \\ 4 & 5 \end{bmatrix}$, can be expressed as
	the sum of a symmetric matrix $\begin{bmatrix} 3 & 1 \\ 1 & 5 \end{bmatrix}$ and a skew symmetric
	[0, -3]
	$matrix \begin{bmatrix} 0 & -3 \\ 3 & 0 \end{bmatrix}$
	Reason(R): For every square matrix $A, \frac{A+A^1}{2}$ is symmetric and
	2
	$\frac{A-A^1}{2}$ is skew - symmetric
22.	If a matrix has 12 elements then
	Assertion(A): The number of possible dimensions of the matrix is 6
	Reason(R): If a matrix has a total of m elements then the
	possible factorizations of m will be the possible dimensions of
	the matrix .
23.	Let A be a square matrix of order 2 x 2, then
L	

	Assertion(A): The number of possible matrices A with its each entry either 0 or 1 is 16.
	Reason(R): If an operation can be performed in m ways following which another operation can be performed in n ways then the two operations can be performed successively in m x n ways
24.	Let $A = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$
	Assertion (A): A^{-1} does not exists
	Reason(R): For a square matrix A, A^{-1} exist if $IAI \neq 0$
25.	Assertion(A): $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -2 & 1 \\ 0 & 2 & 3 \end{bmatrix}$ is invertible
	Reason(R): A is a square matrix and $IAI = -8$

ANSWERS

1.	w = 4, $z + 5 = 0$, $z = -5$, $xy = 4$ and $x + y = 4$, so $x = 2$, $y = 2$. First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
2.	$\{A(BA)\}^{T} = (BA)^{T} \cdot A^{T} = (A^{T}B^{T})A^{T} = (AB)A = A(BA)$ $[(AB)A]^{T} = A^{T}(AB)^{T} = A(B^{T}A^{T}) = A (BA) = (AB)A .$ First statement is correct. $(AB)^{T} = B^{T}A^{T} = BA = AB$, Second statement is correct and it is not the correct explanation of A Option (b)
3.	A = 2 × 3, B = 3 × 2, AB is 2 × 2, B = 3 × 2, A = 2 × 3, BA = 3 × 3 First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
4.	First statement is correct. Second statement is correct and it is not the correct explanation of A Option (b)

5.	First statement is not correct. Second statement is correct Option (d)
6.	First statement is correct. Second statement is correct . $A = -A^T$, Squaring, $A^2 = (-A^T)^2 = (A^T)^2 = (A^2)^T \Rightarrow A^2$ is symmetric matrix. So Second statement is correct and it is the correct explanation of A Option (a)
7.	Second statement is correct $. A(\theta 1). A(\theta 2) = \begin{bmatrix} cos\theta 1 & sin\theta 1 \\ -sin\theta 1 & cos\theta 1 \end{bmatrix} X \begin{bmatrix} cos\theta 2 & sin\theta 2 \\ -sin\theta 2 & cos\theta 2 \end{bmatrix} = \begin{bmatrix} cos(\theta 1 + \theta 2) & sin(\theta 1 + \theta 2) \\ -sin(\theta 1 + \theta 2) & cos(\theta 1 + \theta 2) \end{bmatrix}$ = $A(\theta 1 + \theta 2)$, Second statement is correct $.$ $A(2\theta) = A(\theta). A(\theta) = (A(\theta))^2.$ So $\left[A(\frac{\pi}{3})\right]^3 = A\left[3 \times \frac{\pi}{3}\right] = A(\pi) = \begin{bmatrix} cos\pi & sin\pi \\ -sin\pi & cos\pi \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = -I$, So Second statement is correct and it is the correct explanation of A
8.	If $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \neq 0$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \neq 0$, But $AB = O$ First statement is not correct. $A+B = A+C, -A+(A+B) = -A+(A+C)=(-A+A) + B = (-A+A) + C = O+B=O+C \Rightarrow B = C$. Second statement is correct . Option (d)
9.	For a skew- symmetric matrix, $a_{ij} = -a_{ji}$, for all i and j, so x = 2. First statement is correct. Second statement is correct and it is not the correct explanation of A Option (b)
10.	First statement is correct. Second statement is not correct Option (c)

11.	First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
12.	$AB = \begin{bmatrix} -8\\ 16 \end{bmatrix}, (AB)^{T} = \begin{bmatrix} -8 & 16 \end{bmatrix}$ First statement is correct. Second statement is not correct Option (c)
13.	A^{T} = A and A^{T} = -A \Rightarrow A = -A, 2A = O, A=O, A is a zero matrix. First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
14.	A is $m \times n.A^T$ is $n \times m. BA^T$ is defined, then B must have n columns. A^T B is defined, so then B must have m rows. First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
15.	$(AB - BA)^{T} = -(AB-BA)$, : So AB –BA is skew- symmetric Also, $(AB + BA)^{t} = AB + BA$, So AB +BA is symmetric. First statement is correct. Second statement is correct and it is not the correct explanation of A Option (b)
16.	Because in a skew symmetric matrix $a_{ii} = 0$, for all I, Therefore 2k- 2=0 \Rightarrow k=1 Option (a)
17.	First statement is correct. Second statement is correct and it is the correct explanation of A Option (a)
18.	Because matrices of the same order only can be compared Option (c)

19.	First statement is correct. Second statement is correct and it is the correct explanation of A
	Option (a)
20.	Clearly $A^1 = -A$, therefore A is skew symmetric ,A is true and R is false
	Option (c)
21.	Because, A = $\frac{A+A^1}{2} + \frac{A-A^1}{2}$
	Option (a)
22.	First statement is correct. Second statement is correct and it is the correct explanation of A
	Option (a)
23.	First statement is correct. Second statement is correct and it is the correct explanation of A
	Option (a)
24.	Here IAI = $-5 \neq 0$, Therefore A ⁻¹ exists.So, A is false but R is true Option (d)
25.	IAI = -8 .Therefore R is true. Also IAI = $-8 \neq 0$. Therefore A is invertible so A is true. But IAI = -8 is not the reason for A to be invertible .The reason is that IAI = $-8 \neq 0$.
	Option (b)

CASE BASED QUESTIONS

1.	Three students Ram, Mohan and Ankit go to a shop to buy
	stationary. Ram purchases 2 dozen note books, 1 dozen pens and 4
	pencils. Mohan purchases 1 dozen note book, 6 pens and 8 pencils.
	Ankit purchases 6 note books, 4 pens and 6 pencils. A note book
	costs ₹ 15, a pen costs ₹4.50 and a pencil costs ₹ 1.50.
	Let A and B be the matrices representing the number of items
	purchased by the three students and the prices of items respectively.
	Based on the above information answer the following questions.

	(ii) of the i (ii) What is purchas	the order of the r ed by the three st the order of the r O	natrix A represe udents natrix AB. R	enting items
2.	Three schools DPS, CVC and NVS decided to organize a fair for collecting money for helping the food victims. They sold handmade fans, mats and plates from recycled material at a cost of ₹ 25, ₹ 100 and ₹50 each respectively. The number of articles sold are given below:		y sold handmade ost of ₹ 25, ₹ 100,	
	School/Article	DPS	CVC	NVS
	Handmade fans	40	25	35
	Mats	50	40	50
	Plates	20	30	40
	Based on the above	ve information ar	swer the following	ng questions.
	(ii) If the nu intercha	the total money of amber of handma anged for all the s collected by all th	de fans and plate chools, then what	s are
3.	 On her birthday ,Seema decided to donate some money to children of an orphanage home. If there were 8 children less , everyone would have got ₹10 more. However if there were 16 children more , everyone would have got ₹10 less. Let the number of children be x and the amount distributed by Seema for one child be ₹ y. (i) Write the matrix equation to represent the information given above. (ii) Find the number of children who were given some money by Seema. (iii) How much amount is given to each child by Seema. OR How much amount Seema spends in distributing the money 			
	to all th	e children of Orp	hanage.	

4.	 Gautam buys 5 pens, 3 bags and 1 Instrument box and pays a sum of ₹160. From the same shop Vikram buys 2 pens, 1 bag and 3 Instrument boxes and pays a sum of ₹190. Ankur buys 1 pen, 2 bags and 4 Instrument boxes and pays a sum of ₹ 250 Based on the above information answer the following questions. (i) Write the matrix equation to represent the information given above. (ii) Find P = A²-5A
5.	Two farmers Ramakrishnan and Charan Singh cultivate only three varieties of rice namely Basmati, Permal, and Naura. The sale in Rs of these varieties of rice by both the farmers in the month of September and October are given in the following matrices A and B. $A = \begin{bmatrix} 10000 & 20000 & 30000 \\ 50000 & 30000 & 10000 \end{bmatrix}$ $B = \begin{bmatrix} 5000 & 10000 & 6000 \\ 20000 & 10000 & 10000 \end{bmatrix}$ (i) How the total sales in of September and October for each farmer in each variety can be represented in form of matrix. (ii) How the decrease in sales from September to October can be represented in form of matrix. (iii) If Ramakrishnanreceives 2% profit on gross sales, compute his profit for each variety sold in October. OR If Charansingh receives 2% profit on gross sales, compute his profit for each variety sold in September
6.	To promote the making of toilets for women, an organisation tried to generate awareness through (i)house calls (ii) emails and (iii) announcements .The cost for each mode per attempt is given below (i) ₹ 50 (ii) ₹ 20 (iii) ₹ 40 The number of attempts made in the villages X,Y and Z are given below (i) (ii) (iii) (iii) X 400 300 100 Y 300 250 75 Z 500 400 150

	 Also the chance of making of toilets corresponding to one attemp of given modes is (i) 2% (ii) 4% (iii) 20% Based on the above information answer the following questions : (i) What is the cost incurred by the organization on village X (ii) What is the cost incurred by the village Y 			ng questions :
	(iii) What is t	he cost incurred b	by the village Z	
		0	R	
	What is t	he total number of	of toilets that can	be expected after
	the prom	otion in village X		
7.	A trust fund has ₹ 35000 that must be invested in two different types of bonds say X and Y .The first bond pays 10% interest per annum ,which will be given to an old age home and second one pays 8% interest per annum which will be given to women welfare association .Let A be a 1 x 2 and B be a 2 x 1 matrix representing the investment and interest rate on each bond respectively.			
	if ₹15000	e total amount of is invested in bor	interest received	
		ven to old age hor		
8.	A manufacturer p and Sharpener w indicated below:		• •	
	Products in numbers given below in the table			
	Market	Pencil	Eraser	Sharpener
	A	10,000	2,000	18,000
	В	6,000	20,000	8,000

		e price of Pencil, 00 respectively .	Eraser, and Shar	pener are₹2.50,
	above.	the matrix equations to the matrix equation to the matrix equation of the matrix equation o	-	e information given
9.	5	elow are the matri		reating square matrix em namely A , B and
	$A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$], B = $\begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix}$,	$\mathbf{C} = \begin{bmatrix} 2 & 0\\ 1 & -2 \end{bmatrix}$	
	(i) Find A (ii)Evalua (iii) Find A	te $(A^T)^T$		
	C	R		
	Find th	e matrix (a+b) B	, a = 4, b = -2	
10.	and Sharpene indicated belo	er which he sells i	n two markets. A	
	Market	Pencil	Eraser	Sharpener
	A	10,000	2,000	18,000
	В	6,000	20,000	8,000
	₹0.50 respect Sharpener are (i) Find th		nit sale price of F ₹1.00 respectivel Market A and B	-

ANSWERS

1.	$B = \begin{bmatrix} 15\\4.5\\1.3 \end{bmatrix}, A = \begin{bmatrix} 24 & 12 & 4\\12 & 6 & 8\\6 & 4 & 6 \end{bmatrix}$
	(i) $3x1$ (ii) $3x3$ (iii) $3x1$ or $₹756$.
2.	(i) $M = \begin{bmatrix} 25 & 100 & 50 \end{bmatrix}, A = \begin{bmatrix} 40 & 25 & 35 \\ 50 & 40 & 50 \\ 20 & 30 & 40 \end{bmatrix}, MA = \begin{bmatrix} 7000 & 6125 & 7875 \end{bmatrix}$
	Total money collected by all the three schools.= ₹ 21000
	Total money confected by an the three schools. – < 21000
	$(ii)B = \begin{bmatrix} 20 & 30 & 40 \\ 50 & 40 & 50 \\ 40 & 25 & 35 \end{bmatrix}, MB = \begin{bmatrix} 7500 & 6000 & 7750 \end{bmatrix}$
	Total money collected by all the three schools.=₹ 21250.
3.	$(x-8)(y+10) = xy, \rightarrow 5x-4y = 40$
5.	$(x+16)(y-10) = xy$, $\rightarrow 5x-8y = -80$
	(i) $\begin{bmatrix} 5 & -4 \\ r & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ 00 \end{bmatrix}$ (ii) 32 (iii) Rs. 30 Or ₹ 960
4.	(i) $\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$ (ii) 32 (iii) Rs. 30 Or ₹ 960 (i) $\begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix}$
	(ii) $A^2 - 5A = \begin{bmatrix} 32 & 20 & 18 \\ 15 & 13 & 17 \\ 13 & 13 & 23 \end{bmatrix} - \begin{bmatrix} 25 & 15 & 5 \\ 10 & 5 & 15 \\ 5 & 10 & 20 \end{bmatrix} = \begin{bmatrix} 7 & 5 & 13 \\ 5 & 8 & 2 \\ 8 & 3 & 3 \end{bmatrix}$
5.	(i) $A + B = \begin{bmatrix} 15000 & 30000 & 36000 \\ 70000 & 40000 & 20000 \end{bmatrix}$
	(ii) A-B = $\begin{bmatrix} 5000 & 10000 & 24000 \\ 30000 & 20000 & 0 \end{bmatrix}$
	(iii) In October Profit of ₹100, ₹200, ₹120 received by Ramakrishnan in the sale of each variety of rice.
6.	Let $\mathbf{\bar{A}}$, $\mathbf{\bar{R}}$ B and $\mathbf{\bar{R}}$ C be the cost incurred by the organisations for
	villages X, Y, Z respectively. Then A, B, C will be given by the
	matrix equation $\begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 50 \\ 20 \\ 40 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix}$

	Hence $\begin{bmatrix} A \\ B \\ C \end{bmatrix} = \begin{bmatrix} 30000 \\ 23000 \\ 39000 \end{bmatrix}$ (i) 30000 (ii) 23000 (iii) 39000 OR
	The total number of toilets that can be expected in each village is given by the following matrix equation $ \begin{bmatrix} 400 & 300 & 100 \\ 300 & 250 & 75 \\ 500 & 400 & 150 \end{bmatrix} \begin{bmatrix} 2/100 \\ 4/100 \\ 20/100 \end{bmatrix} = \begin{bmatrix} A \\ B \\ C \end{bmatrix} $
	Therefore $X = 40$, $Y = 31$ $Z = 56$ Therefore $X = 40$
7.	If ₹ 15000 is invested in bond X then amount invested in bond
	Y = 35000 - 15000 = 20000
	Let A = investment = [15000 20000] and B = $\begin{bmatrix} 10\% \\ 8\% \end{bmatrix} = \begin{bmatrix} 0.1 \\ 0.08 \end{bmatrix}$
	The amount of interest received on both bonds is given by
	$AB = [15000 \ 20000] \begin{bmatrix} 0.1 \\ 0.08 \end{bmatrix} = [3100]$
	Therefor(i) Total amount = ₹3100
	Let $\exists x \text{ is invested in bond X then we have x x } 10/100 = 500$
	Therefore $X = ₹5000$ Therefore amount invested in bond
	Y = 35000-5000 = 30000
	Ans: (ii) ₹30000
8.	$(i) \begin{bmatrix} 10000 & 2000 & 18000 \\ 6000 & 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix} = \begin{bmatrix} 46000 \\ 53000 \end{bmatrix}$
	(Ii)Revenue of Market A = $\begin{bmatrix} 10000 & 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50 \\ 1.50 \\ 1.00 \end{bmatrix} = $ ₹46000

Revenue of Market B = [6000 20000 8000]

$$\begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}$$
 = ₹53000

 9.
 (i) A+B+C = $\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 0\\ 1 & 5 \end{bmatrix} + \begin{bmatrix} 2 & 0\\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 7 & 2\\ 1 & 6 \end{bmatrix}$

 (ii) $A^T = \begin{bmatrix} 1 & 2\\ 2 & -1 \end{bmatrix}$, $(A^T)^T = \begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix} = A$

 (iii) AC - BC

 $= \begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 1 & -2 \end{bmatrix} - \begin{bmatrix} 4 & 0\\ 1 & 5 \end{bmatrix} \begin{bmatrix} 2 & 0\\ 1 & -2 \end{bmatrix}$
 $= \begin{bmatrix} 4 & -4\\ 1 & -6 \end{bmatrix} - \begin{bmatrix} 8 & 0\\ 7 & -10 \end{bmatrix} = \begin{bmatrix} -4 & -4\\ -6 & 4 \end{bmatrix}$

 OR

 (a+b) B = (4-2) \begin{bmatrix} 4 & 0\\ 1 & 5 \end{bmatrix} = 2 \begin{bmatrix} 4 & 0\\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 8 & 0\\ 2 & 10 \end{bmatrix}

 10.
 (i) Cost incurred in Market A = [10000 2000 18000] \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}

 $= ₹31000$

 Cost incurred in Market B = [6000 2000 8000] \begin{bmatrix} 2.00\\ 1.50\\ 1.50\\ 1.00 \end{bmatrix}

 $= ₹36000$

 (ii) Revenue of Market A = [10000 2000 18000] \begin{bmatrix} 2.50\\ 1.50\\ 1.50\\ 1.00 \end{bmatrix}

 $= ₹36000$

 (iii) Revenue of Market B = [6000 2000 8000] \begin{bmatrix} 2.50\\ 1.50\\ 1.50\\ 1.00 \end{bmatrix}

 $= ₹36000$

 Revenue of Market B = [6000 2000 8000] \begin{bmatrix} 2.50\\ 1.50\\ 1.50\\ 1.00 \end{bmatrix}

 $= ₹36000$

 Revenue of Market B = [6000 20000 8000] \begin{bmatrix} 2.50\\ 1.50\\ 1.50\\ 1.00 \end{bmatrix}

 $= ₹36000$

 Profit in market A = ₹46000 - ₹31000= ₹15000

 Profit in market B = ₹53000-₹36000=₹17000

CHAPTER : DETERMINANTS

ASSERTION-REASON QUESTIONS

	 In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both (A) and (R) are true and (R) is the correct explanation of (A). (b) Both (A) and (R) are true but (R) is not the correct explanation of (A). (c) (A) is true but (R) is false. (d) (A) is false but (R) is true
1	Assertion (A): If $A = \begin{bmatrix} \alpha & 3 \\ 3 & \alpha \end{bmatrix}$ and $ A ^3 = -125$, then $\alpha = \pm 2$ Reason (R) : Determinant of a square matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is given as $a_{22} - a_{12}a_{21}$
2	Assertion (A): If A is a square matrix of order 3x3, then $ 3A =27 A $ Reason (R) : If A is a square matrix of order n, then $ kA = k^n A $
3	Assertion (A): The minor of the element of second row and thirdcolumn in the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & 7 \end{vmatrix}$ is 13Reason (R): The positive value of x, which makes the given pair of determinants $\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix}$ and $\begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix}$ equal is 4.
	$5 x^{1}$ and $5 2^{1}$ equal 15 4.
4	Assertion (A): If $A = \begin{bmatrix} 3 & 10 \\ 2 & 7 \end{bmatrix}$ then $A^{-1} = \begin{bmatrix} 7 & -10 \\ -2 & 3 \end{bmatrix}$ Reason (R): Determinant is a number associated to a matrix.
	Reason (R). Determinant is a number associated to a matrix.
5	Assertion (A): A square matrix A has inverse, if and only if A is singular.
	Reason (R): Let A be a square matrix of order 2x2, then the value of $ kA $ is equal to $k^2 A $.
6	Assertion (A): If A is an invertible matrix of order 3x3, then $ A^{-1} = A $.
	Reason (R): If A is a 3x3 invertible matrix such that $ A^{-1} = A ^k$, then the value of k is -1

7	Assertion (A): If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{bmatrix}$, then $ A = 105$
	Reason (\mathbf{R}): The determinant of a diagonal matrix is equal to the product of the diagonal elements
8	Assertion (A): Determinant of a skew symmetric matrix of order 3 is zero. Reason (R) : For any matrix A, $ A = A^T $ and $ -A = - A $
9	Assertion (A): If A and B are square matrices of the same order 3 such that $2AB=I$ and $ B = \frac{1}{24}$, then $ A = 3$
	Reason (R) : If A and B are square matrices of the same order n and k is a scalar, then $ kA = (k)^n A $ and $ AB = A B $
10	Assertion (A): The matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ -1 & 2 & x \end{bmatrix}$ is singular for x=5 Reason (R): A square matrix A is singular if $ A =0$
11	Assertion (A):If A is a square matrix of order3 such that A =5,then adj A = 25
	Reason (R): If A is a non-singular matrix of order n, then $ adj A = A ^{n-1}$
12	Assertion (A): If A is a square matrix of order 3 such that $ A =4$, then $ adj(adjA) =4^4$
	Reason (R): If A is a non-singular square matrix of order n, then $ adj(adjA) = A ^{(n-1)^2}$
13	Assertion: If A is invertible matrix, then A ^T is invertible Reason : Inverse of invertible symmetric matrix is invertible symmetric matrix
14	Assertion: If A and B are square matrices of order 2 such that $3AB = I$ and det(A) = 9, then det(B) = $\frac{1}{81}$

	Reason: If A and B are square matrices of order n and k is a scalar, then $det(kA) = k^n det(A)$ and $det(AB) = det(A).det(B)$
15	Assertion: If $\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$ then $x = \pm 6$
	Reason: If A is a symmetric matrix, then $A^{T} = A$
16	Assertion: If A is a square matrix of order 3, det $A^{T} = -5$, then
	$det A = -5$ Reason : $det A = det A^{T}$
17	Assertion: If A is a square matrix such that $A(adjA) = 4I$, then det $A = 2$
	Reason : $A(adjA) = A I$
18	Assertion: If A is a 3x3 non-singular square matrix, then
	$ A^{-1}adjA = A $ P ercent of A and b are invertible matrices such that D is inverse of A
	Reason : If A and b are invertible matrices such that B is inverse of A, then $AB = BA = I$
19	Let A and B are two square matrices of order 2 Assertion: $A(adiA) = (datA) I$
	Assertion: $A (adjA) = (detA) I$ Reason: $adj(AB) = (adjA)(adjB)$
20	Assertion: Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where a, b, c, d are distinct prime numbers
	less than 20, then maximum value of det A is 317
	Reason : Prime numbers less than 20 are 2, 3, 5, 7, 11, 13, 17 and 19
21	Assertion: The system of linear equations $5x + ky = 5$ and $3x + 3y = 5$ has a unique solution for $k \neq 5$
	has a unique solution for $K \neq J$
	Reason: The system of linear equations $5x + ky = 5$, $3x + 3y = 5$ is
	inconsistent for $k = 5$
22	Assertion: If A is a non singular matrix of order 2x2 such that
	$A^2 - 5A + 7I = 0$, then $A^{-1} = 1/7(5I - A)$
	Reason: For any two matrices A and B, $(AB)^{-1} = A^{-1}B^{-1}$

23	Assertion: If A is square matrix of order 2 such that $(\det A)A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$, then $\operatorname{adj} A = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$ Reason: $A^{-1} = \frac{1}{ A } a djA$
24	Assertion: Range of the function $f(x) = \begin{vmatrix} cosx & -2sinx \\ 3sinx & cosx \end{vmatrix}$ is [1, 7] Reason: $-1 \le sinx \le 1$
25	Assertion: If $A = \begin{bmatrix} 2 & 1+2i \\ 1-2i & 2 \end{bmatrix}$ then det A is real a number Reason: If $A = (a_{ij})_{2x2}$, where a_{ij} being complex numbers, then det A is always real.

SOLUTIONS

1	Answer: a
	$ \mathbf{A} = \begin{vmatrix} \alpha & 3 \\ 3 & \alpha \end{vmatrix} = \alpha^2 - 9$
	$ A ^3 = -125$
	$(\alpha^2 - 9)^3 = -125 = (-5)^3$
	$(\alpha^2 - 9) = -5$
	$\alpha^2 = 4$
	$\alpha = \pm 2$
	Therefore assertion (A) is true
	Reason (R) is clearly true which is the definition of determinant and is the
	Correct explanation of (A).
	Therefore ,Both (A) and (R) are true and (R) is the correct explanation of
	(A).
	Hence Option (a) is the corerct answer.
2	Answer: a
	$ 3A = 3^{3} A $
	=27 A
	Therefore assertion (A) is true
	Reason (R) is clearly true which is a standard result of determinant and is
	the

	correct explanation of (Λ)
	correct explanation of (A) .
	Therefore, Both (A) and (R) are true and (R) is the correct explanation of
	(A).
	Hence Option (a) is the correct answer.
3	Answer: b
5	
	12 _21
	Minor of $a_{23} = \begin{vmatrix} 2 & -3 \\ 1 & 5 \end{vmatrix} = 13$
	Therefore Assertion (A) is true
	For reason,
	$\begin{vmatrix} 2x & 3 \\ 5 & x \end{vmatrix} = \begin{vmatrix} 16 & 3 \\ 5 & 2 \end{vmatrix}$
	$2x^2 - 15 = 32 - 15$
	$x^2 = 16$
	$x = \pm 4$
	x= 4
	Therefore Reason (R) is true, but not the corret explanation.
	So, Both (A) and (R) are true but (R) is not the correct explanation of (A).
	Hence Option (b) is the correct answer.
4	Answer: c
4	Answer. C
	$A^{-1} = \frac{1}{ A } \operatorname{adj} A$
	$=\frac{1}{1}\begin{bmatrix} 7 & -10\\ -2 & 3 \end{bmatrix}$
	$=\begin{bmatrix}7 & -10\\-2 & 3\end{bmatrix}$
	$\begin{bmatrix} -2 & 3 \end{bmatrix}$
	Therefore assertion (A) is true.
	Also as determinant is associated to a square matrix, Reason is wrong.
	Therefore, (A) is true but (R) is false
	Hence Option (c) is the correct answer
5	Answer: d
5	
1	
	A square matrix A has inverse, if and only if A is non- singular
	A square matrix A has inverse, if and only if A is non- singular ie. $ A \neq 0$
	A square matrix A has inverse, if and only if A is non- singular
	A square matrix A has inverse, if and only if A is non- singular ie. $ A \neq 0$
	A square matrix A has inverse, if and only if A is non- singular ie. $ A \neq 0$ So Assertion is false.
	A square matrix A has inverse, if and only if A is non- singular ie. $ A \neq 0$ So Assertion is false. For reason , $ kA = k^n A $
	A square matrix A has inverse, if and only if A is non- singular ie. $ A \neq 0$ So Assertion is false. For reason,

	Therefore (A) is false but (R) is true.
	Hence Option (d) is the correct answer.
6	Answer: d
	1
	$ A^{-1} = \frac{1}{ A }$, So assertion is false
	For reason $ A^{-1} = A ^k$
	$\frac{1}{ A } = A ^k$
	$ A ^{ A } A ^{k+1} = 1$
	k + 1 = 0
	K= -1
	So reason is true.
	Therefore (A) is false but (R) is true.
	Hence Option (d) is the correct answer
7	Answer: a
/	
	A = 3x35 = 105. So assertion is true.
	Reason statement is also true.
	Therefore Both (A) and (R) are true and (R) is the correct explanation of
	(A).
	Hence Option (a) is the correct answer
8	Answer: c
	Let A be a skew symmetric matrix of order 3, $\tilde{\pi}$
	$A^T = -A$
	$ A^{T} = -A $
	$ A = (-1)^3 A $ A = - A
	$\frac{ \mathbf{A} - \mathbf{A} }{2 \mathbf{A} = 0}$
	$ \mathbf{A} = 0$
	So assertion is true.
	For reason, $ A = A^T $ is true but $ -A = (-1)^n A $, so reason is
	false.
	Therefore (A) is true but (R) is false.
	Hence Option (c) is the correct answer
9	Answer: a
2	

	Reason are standard properties of determinants, so reason is true		
	For Assertion, 2AB=I		
	2AB = I		
	$(2)^{3} AB =1$		
	8 A B =1		
	$8 A \frac{1}{24}=1$		
	A =3		
	So assertion is true.		
	Therefore Both (A) and (R) are true and (R) is the correct		
	explanation of (A).		
	Hence Option (a) is the correct answer		
10	Answer: d		
	Reason is the definition of singular matrix and hence true.		
	For assertion $ A = 0$		
	1(x-4)-2(2)+0=0		
	$x-8=0 \implies x=8$. Thus matrix A is singular for x=8.		
	Therefore (A) is false but (R) is true.		
	Hence Option (d) is the correct answer		
11	Answer: d		
	Reason is true which is a standard result.		
	For assertion, by using the reason $ \text{adj A} = A ^{n-1} = 5^{3-1}$		
	=25.So assertion is		
	true.		
	Therefore Both (A) and (R) are true and (R) is the correct explanation of		
	(A).		
	Hence Option (a) is the correct answer.		
12	Answer: a		
	For reason, $ adj(adjA) = adjA ^{n-1} = A ^{(n-1)^2}$. So reason is true.		
	For assertion $ adj(adjA) = A ^{(n-1)^2} = 4^{(3-1)^2} = 4^4$. So assertion is true.		
	Therefore Both (A) and (R) are true and (R) is the correct explanation of		
	(A).		
	Hence Option (a) is the correct answer		

13	Answer: b
	since A is invertible $ A \neq 0 => A^T \neq 0 => A^T$ is invertible So A is true Let P be invertible symmetric matrix, then $ P \neq 0$ and $P^T = P$ $(P^{-1})^T = (P^T)^{-1} = P^{-1}$ Hence P ⁻¹ is also symmetric matrix => R is true But R does not explains A Hence b is correct
14	Answer: a
	The results given in Reason are standard properties of determinants and hence R is true. Using these results we get 2AB = I $3^2 A B = 1 \implies 9.9. B = 1 \implies B = 1/81$ Hence A is true Option a correct answer
15	Answer: b
	On expanding determinants we get $x^2 - 36 = 36 - 36 \implies x = \pm 6$ So A is true R is property of a symmetric matrix , hence true But R does not explains A Option b is correct answer
16	Answer: a
	Result given in reason is a standard property of determinants hence true Using this formula we can see clearly Assertion is true Hence option a is correct answer
17	Answer: c
	Formula in reason is correct, using this we get $det A = 4$
	Hence A is false and R is true
	Option c is correct
L	

18	Answer: b
	$ A^{-1}adjA = A^{-1} adjA (since, detAB = detA. detB)$ = A ^{-1} A ^2(adjA = A ^{n-1}) and detA^{-1} = (detA)^{-1} = A Hence A is true R is definition of inverse of a matrix, so true But R does not explains A Option b is correct answer
19	Answer: c
	For square matrix A A (adjA) = (detA) I Hence A is true But adj(AB) = (adjB)(adjA) (property) Hence R is false Option c is correct answer
20	Answer: a
	$ A = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \text{ is maximum if ad is max. and bc is min.}$ ad = 17x19 = 323 and bc = 2x3 = 6 Therefore max. value of detA is 323-6 = 317 Option a is correct answer
21	Answer: b For unique solution det. of coefficient matrix $\neq 0$ $\begin{vmatrix} 5 & k \\ 3 & 3 \end{vmatrix} \neq 0$, we get $k \neq k \neq k \neq 0$
	5
	A is true For $k = 5$ the given lines are parallel hence no solution, therefore inconsistent R is true
	But R is not correct explanation for A
	Option b is correct answer
22	Answer: c $A^{-1}(A^2 - 5A + 7I) = 0$ implies $A - 5I + 7A^{-1} = 0$ implies $A^{-1} = 1/7(5I - A)$ A is true Clearly reason is false Option c is correct answer

23	Answer:d
	Formula given in reason is true. Using this result we get $adjA = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ A is false and R is true Option d is correct answer
24	Answer: d
	$f(x) = \cos^2 x + 6 \sin^2 x = 1 + 5 \sin^2 x$ Range of f(x) is [1 + 5(0), 1 + 5(1)] = [1, 6] hence A is false R is true Option d is correct
25	Answer:c
	det A = $2x2 - (1 - 2i)(1 + 2i) = 5$ which is real, so A is true If elements of a matrix are complex numbers then det A may be real or complex. So R is false Option c is correct answer

CASE BASED QUESTIONS

1 Three shopkeepers Ravi ,Raju and Rohit are using polythene bags, handmade bags (prepared by prisoners) and newspaper's envelope as carry bags. It is found that the shopkeepersRavi ,Raju and Rohit are using (20,30,40), (30,40,20) and (40, 20, 30) polythene bags, handmade bags and newspaper's envelopes respectively. The shopkeepers Ravi ,Raju and Rohitspent Rs.250, Rs.270 and Rs.200 on these carry bags respectively
With the structure of the st

	(III) Find the cost of one handmade bag and one newspaper envelope bag
2	 A trust invested some money in two types of bonds . The first bond pays 10% interest and second bond pays 12% interest. The trust received rupees 2800 as interest.However , if trust hadinterchanged money in bonds, they would have got rupees 100 less as interest.Based on the information answer the following. 1. Represent the above situation algebraically & write the system in the form of matrices. 2. Find the amount invested in first bond. 3. Find the amount invested in second bond.
3	A shopkeeper has 3 varieties of pens A,B,C. Meenu purchased 1 pen of each variety for a total of rupees 21.Jeeva purchased 4 pens of A variety, 3 pens of B variety and 2 pens of C variety for rupees 60.While Shikha purchased 6 pens of A variety,2pens of B variety and 3 pens of C variety for rupees 70.
	form of matrices. 2. Find the cost of pen of variety A 3. Find the cost of pen of variety B OR Find the cost of pen of variety C
4	The management committee of a residential colony decided to award some of its members for honesty, some for helping others and some others for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for co-operation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice

	the number of awardees for helping others, Based on the above information answer the following
	1. Find the number of awards for honesty
	2. Find the number of awards for helping others
	3. Find the number of awards for supervising the workers
5	 On her birthday Reena decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got rupees 10 more. However if there were 16 children more everyone would have got rupees 10 less. Based on this information answer the following questions. 1. Represent the above situation algebraically & write the system in the form of matrices. 2. Find the number of children 3. Find the amount donated by Reena to each child
6	 Gautam buys 5 pens, 3 bags and 1 instrument box and pays a sum of Rs.160. From the same shop Vikram buys 2 pens, 1 bag and 3 instrument boxes and pays a sum of Rs. 190. Also Ankur buys 1 pen, 2 bags and 4 instrument boxes and pays a sum of Rs. 250 Based on the above information answer the following questions i) Express the above given situation into a matrix equation of the form AX = B ii) Find det A iii) a) Find A⁻¹
	OR b) Determine $P = A^2 - 5A$
7	Raman wants to donate a rectangular plot of land for school in her village. When she was asked to give the dimensions of the plot, she told that if its

	does no	s decreased by 50m and breadth is increased by 50m, then its area t alter, but if length is deceased by 10m and breadth is decreased by en area will decrease by 5300m ²
	Based of	on the above information, answer the following questions
	i)	If the length and breadth of the plot are x and y respectively, then
		find the system of linear equations in x and y
	ii)	Find the length and breadth of the plot
	iii)	Find the area of the rectangular plot
8	expendi respecti Based o i) ii) iii)	on the above information answer the following questions If their incomes are x and 2x; and their expenditures are 2y and y respectively, then write the linear equations for the above situation Find the income of Sita Find the expenditure of Savita OR Find their total income
9	$\leq t \leq 10$ 3 sec, t = second If $\begin{bmatrix} 9\\ 36\\ 81 \end{bmatrix}$	ward speed v(t) of a rocket at time t is given by V(t) = $at^2 + bt + c$, 0 0, where a. b. c are constants. It has been found that the speed at t = = 6 sec and t = 9 sec are respectively 64, 133 and 208 miles per $\begin{pmatrix} 3 & 1 \\ 6 & 1 \\ 9 & 1 \end{bmatrix}^{-1} = \frac{1}{18} \begin{bmatrix} 1 & -2 & 1 \\ -15 & 24 & -9 \\ 54 & -54 & 18 \end{bmatrix}$ the following questions

	 i) Find the value of b + c ii) Find the speed V(t) in terms of t
10	 A diet is to contain 30 units of vitamin A, 40 units of vitamin B and 20 units of vitamin C. Three types of foods F₁, F₂ and F₃ are available. One unit of F1 contains 3 units of vitamin A, 2 units vitamin B and 1 unit of vitamin C. One unit of F2 contains 1 unit of vitamin A, 2 units of vitamin B and 1 unit of vitamin C. One unit of F3 contains 5 units of vitamin A, 3 units of vitamin B and 2 units of vitamin C. Based on the above information answer the following questions i) If the diet contains x units food F1, y units food F2 and z units of food F3, then write the above information in terms of x, y and z
	ii) Find the values of x, y and z

SOLUTIONS

1	(1) Let the cost of one polythene bag be x, one handmade bag be y and			
	one newspaper envelope bag be z			
	20x+30y+40z=250			
	30x + 40y + 20z = 270			
	40x + 20y + 30z = 200			
	$\begin{bmatrix} 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix}$			
	$\begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 25 \\ 27 \\ 20 \end{bmatrix}$			
	AX =B			
	$\mathbf{X} = A^{-1}\mathbf{B}$			
	$=\left(\frac{1}{ A } \operatorname{adj} A\right) B$			
	$= \frac{1}{-27} \begin{bmatrix} 8 & -1 & -10 \\ -1 & -10 & 8 \\ -10 & 8 & -1 \end{bmatrix} \begin{bmatrix} 25 \\ 27 \\ 20 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$			
	x=1, y=5,z=2			
	(2) x=1			
	(3) y=5, z=2			
2	(1) Let x and y be the money invested in first and second bond			
	respectively			
	$X\left(\frac{10}{100}\right) + y\left(\frac{12}{100}\right) = 2800$			
	$\Lambda (100) + y (100) - 2000$			

$$\begin{array}{l} X \left(\frac{12}{100}\right) + y \left(\frac{10}{100}\right) = 2700 \\ \Leftrightarrow 10x + 12y = 280000 \\ 12x + 10y = 270000 \\ \left[\frac{10}{12} \quad 12\right] \left[\frac{x}{y}\right] = \left[\frac{280000}{270000}\right] \\ AX = B \\ X = A^{-1}B \\ = \left(\frac{1}{|A|} \operatorname{adjA}\right) B \\ = \frac{1}{-44} \left[\frac{10}{-12} \quad 10\right] \left[\frac{280000}{270000}\right] = \frac{1}{-44} \left[\frac{-440000}{-660000}\right] \\ = \left[\frac{10000}{15000}\right] \\ (2) x = 10000 \\ (3) y = 15000 \\ \end{array}$$

$$\begin{array}{l} \text{(1) Let the cost of a pen of variety A be x, B be y and C be z} \\ x + y + z = 21 \\ 4x + 3y + 2z = 60 \\ 6x + 2y + 3z = 70 \\ \left[\frac{1}{4} \quad 3 \quad 2 \\ 1 \\ 6 \quad 2 \\ -10 \end{array}\right] \left[\frac{x}{y}\right] = \left[\frac{21}{60} \\ 70 \\ AX = B \\ X = A^{-1}B \\ = \left(\frac{1}{|A|} \operatorname{adjA}\right) B \\ = \frac{1}{-5} \left[\frac{5}{0} \quad -1 \quad -1 \\ 0 \quad -3 \quad 2 \\ -10 \quad 4 \quad -1 \end{array}\right] \left[\frac{21}{60} \\ 1500 \\ \begin{array}{l} \text{(2) } x = 5 \\ \text{(3)} y = 8 \text{ OR } z = 8 \\ \end{array}$$

$$\begin{array}{l} 4 \\ \text{Let the number of awardees for honesty be x, number of awardees for shoresty be z \\ \text{for helping others be y and number of awardees for number of awardees for shoresty be z \\ \text{for y = 2} x + y + z = 12 \\ 3(y + z) + 2x = 33 \Rightarrow 2x + 3y + 3z = 33 \end{array}$$

	x + z = 2y = x - 2y + z = 0
	$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 3 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 12 \\ 33 \\ 0 \end{bmatrix}$ AX = B X = A ⁻¹ B = $(\frac{1}{ A } adjA) B$
	$=\frac{1}{3}\begin{bmatrix}9 & -3 & 0\\1 & 0 & -1\\-7 & 3 & 1\end{bmatrix}\begin{bmatrix}21\\60\\70\end{bmatrix} = \begin{bmatrix}12\\33\\0\end{bmatrix} = \begin{bmatrix}3\\4\\5\end{bmatrix}$
	1. x=3, 2. y=4, 3. z=5
5	Let the number of children be x and the amount donated by Reena to each child be y. (x-8) (y+10) = xy => xy+10x-8y-80=xy (x+16) (y-10) = xy => xy-10x+16y-160=xy $\Rightarrow 5x-4y=40$ (I) $\Rightarrow 5x-8y=-80$ (I) $\begin{bmatrix} 5 & -4 \\ 5 & -8 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 40 \\ -80 \end{bmatrix}$
	AX = B X = $A^{-1}B$ = $\left(\frac{1}{ A } \operatorname{adj} A\right) B$ = $\frac{1}{-20} \begin{bmatrix} -8 & 4 \\ -5 & 5 \end{bmatrix} \begin{bmatrix} 40 \\ -80 \end{bmatrix} = \frac{1}{-20} \begin{bmatrix} -640 \\ -600 \end{bmatrix} = >$ 2. x = 32 3. y = 30
6	Let the cost of 1 pen, 1 bag and 1 instrument box are Rs.x, y and z respectively From the question $5x + 3y + z = 160$, $2x + y + 3z = 190$ and $x + 2y + 4z = 250$

	i) $\begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix}$ where $A = \begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, B = $\begin{bmatrix} 160 \\ 190 \\ 250 \end{bmatrix}$
	ii) $ A = \begin{vmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{vmatrix} = -22$
	iii) a) $\operatorname{adjA} = \begin{bmatrix} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{bmatrix}$ and $\operatorname{A}^{-1} = \frac{1}{ A } a djA = \frac{1}{-22} \begin{bmatrix} -2 & -10 & 8 \\ -5 & 19 & -13 \\ 3 & -7 & -1 \end{bmatrix}$
	b) $P = A^2 - 5A = \begin{bmatrix} 32 & 20 & 18 \\ 15 & 13 & 17 \\ 13 & 13 & 23 \end{bmatrix} - 5\begin{bmatrix} 5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 5 & 13 \\ 5 & 8 & 2 \\ 8 & 3 & 3 \end{bmatrix}$
7	i) area of the plot = xy Given that $(x - 50)(y + 50) = xy \implies x - y = 50$ and $(x - 10)(y - 20) = xy - 5300 \implies 2x + y = 550$
	The matrix equation of the above system is $\begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 50 \\ 550 \end{bmatrix}$ AX = B implies X = A ⁻¹ B => X = $\frac{1}{3} \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 50 \\ 550 \end{bmatrix} = \begin{bmatrix} 200 \\ 150 \end{bmatrix}$ x = 200 and y = 150 ii) length is x = 200m, breadth y = 150m iii) area xy = 200x150 = 30000m ²
8	i) Income – expenditure = savings \Rightarrow we get $x - 2y = 500$, $2x - y = 2500$
	ii) $AX = B = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 500 \\ 2500 \end{bmatrix}$ $X = A^{-1}B = \frac{1}{3} \begin{bmatrix} -1 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 500 \\ 2500 \end{bmatrix} = \begin{bmatrix} 1500 \\ 500 \end{bmatrix}$ x = 1500 and y = 500 Income of Sita is x = Rs. 1500

iii)Expenditure of Savita is y = Rs. 500 (OR)
their total income is x + 2x = 3x = 3x 1500 = Rs.4509Given v(3) =64, v(6) = 133 and v(9) = 208
We get 9a + 3b + c = 64, 36a + 6b + c = 133 and 81a + 9b + c = 208
The matrix equation is $\begin{bmatrix} 9 & 3 & 1 \\ 36 & 6 & 1 \\ 81 & 9 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 64 \\ 133 \\ 208 \end{bmatrix}$ AX = B implies X = A⁻¹ B => X = $\frac{1}{18} \begin{bmatrix} 1 & -2 & 1 \\ -15 & 24 & -9 \\ 54 & -54 & 18 \end{bmatrix} \begin{bmatrix} 64 \\ 133 \\ 208 \end{bmatrix}$ $X = \frac{1}{18} \begin{bmatrix} 6 \\ 360 \\ 18 \end{bmatrix} => a = 1/3, b = 20, c = 1$
i) b + c = 21
ii) $v(t) = (1/3)t^2 + 20t + 1$ 10i) As per the given information
3x + y + 5z = 30, 2x + 2y + 3z = 40 and x + y + 2z = 20
ii) On solving these equations by matrix method we get x = 5, y + 15 and
z = 0

CHAPTER : CONTINUITY AND DIFFERENTIABILITY

ASSERTION AND REASONING QUESTIONS

	 Two statements are given below - one labeled Assertion (A) and the other labeled Reason (R). Read the statements carefully and choose the option that correctly describes statements (A) and (R). (a) Both (A) and (R) are true and (R) is the correct explanation for (A). (b) Both (A) and (R) are true but (R) is not the correct explanation for (A). (c) (A) is true but (R) is false. (d) (A) is false but (R) is true. 		
1	Assertion (A): $f(x) = 2x + 5$ is continuous on the set of all real numbers.		
	Reason (R): $f(x)$ is a polynomial function		
2	Assertion (A): $f(x) = x - 3 $ is continuous at $x = 3$ Reason (R): $f(x) = x - 3 $ is differentiable at $x = 3$		
3	Assertion (A): $f(x) = [x]$, where [x] is the greatest integer less than or equal to x is continuous at $x = 3$.		
	Reason (R) : $f(x) = [x]$, where [x] is the greatest integer less than or equal to x is not differentiable at $x = 3$.		
4	Consider the function $f(x) = \begin{cases} \frac{x^2 - 5x + 6}{x - 3}, & \text{for } x \neq 3 \\ k, & \text{for } x = 3 \end{cases}$ is continuous at x = 3		
	Assertion (A): The value of k is 4 Reason (R): If $f(x)$ is continuous at a point a then $\lim_{x \to a} f(x) = f(a)$		
5	Consider the function $f(x) = \begin{cases} \frac{k x-3 }{x-3}, & \text{if } x < 3\\ 5, & \text{if } x \ge 3 \end{cases}$ is continuous at $x = 3.$		
	Assertion (A): The value of k is -5.		

	Reason (R): $\frac{ x-3 }{x-3} = \begin{cases} 1, & \text{if } x \ge 3\\ -1, & \text{if } x < 3 \end{cases}$			
	x-3 (-1, <i>lf</i> $x < 3$			
6	Assertion (A): The number of points of discontinuity of the function f(x) = x - [x] in the interval (-2, 5) are 6.			
	Reason (R) : The greatest integer function [x] is continuous at all integral values of x.			
7	Assertion (A): $\frac{d}{dx}(sin^2x) = \sin 2x$			
	Reason (R): Let <i>f</i> be a real valued function which is a composite of two functions <i>u</i> and <i>v</i> ; i.e., $f = v \circ u$. Suppose $t = u(x)$ and if both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist, we have $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$.			
8	Assertion (A): $\frac{d}{dx}sin(cosx) = cos(sinx)$			
	Reason (R): Let <i>f</i> be a real valued function which is a composite of two functions <i>u</i> and <i>v</i> ; i.e., $f = v$ o <i>u</i> . Suppose $t = u(x)$ and if both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist, we have $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$.			
9	Assertion (A): $\frac{d}{dx}\sin^{-1}(\cos x) = -1$			
	Reason (R): $\sin^{-1}(\sin x) = x$, for $ x \le 1$ and $\cos x = \sin\left(\frac{\pi}{2} - x\right)$			
10	Assertion (A): $\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right) \right] = -1$			
	Reason (R): $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$			
11	Assertion (A): $\frac{d}{dx}\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \frac{2}{1+x^2}$			
	Reason (R): $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$			
12	Assertion (A): $\frac{d}{dx} \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) = \frac{-2}{1 + x^2}$			

	Reason (R) : $\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$
13	If $2x + 3y = \sin y$ Assertion (A): $\frac{dy}{dx} = \frac{-2}{3 - \cos y}$
	Reason (R) : $2x + 3y = \sin y$ is an explicit function.
14	Assertion (A): $\frac{d}{dx} \left(e^{\log x} \right) = 1$
	Reason (R): $e^{\log x} = x$
15	Assertion (A): $\frac{d}{dx}(e^{\sin x}) = e^{\cos x}$
	Reason (R): $\frac{d}{dx}(e^x) = e^x$
16	Assertion (A): $\frac{d}{dx}\log(\log x) = \frac{1}{x\log x}$
	Reason (R) : $\frac{d}{dx}\log x = \frac{1}{x}$
17	Assertion (A): $\frac{d}{dx}\log_{10} x = \frac{1}{x}$
	Reason (R) : $\frac{d}{dx}\log_e x = \frac{1}{x}$
18	Assertion (A): $\frac{d}{dx}(5^x) = 5^x \log 5$
	Reason (R): $\frac{d}{dx}(a^x) = a^x \log a$
19	Assertion (A): $\frac{d}{dx}(a^a) = a^a \log a$
	Reason (R): $\frac{d}{dx}(a^x) = a^x \log a$
20	Assertion (A): $\frac{d}{dx} (2^{\sin x}) = 2^{\sin x} \log 2$
	Reason (R): $\frac{d}{dx}(a^x) = a^x \log a$
21	If $x = a \sin t$ and $y = b \cos t$

Assertion (A):
$$\frac{dy}{dx} = -\frac{b}{a} \tan t$$

Reason (R): if $y = f(t)$ and $x = g(t)$ then $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ 22Assertion (A): Second derivative of log x is $\frac{-1}{x^2}$
Reason (R): Derivative of e^x is e^x .23If $y = \log x$
Assertion (A): $xy'' + y' = 0$
Reason (R): $\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ 24If $y = t^3$ and $x = t^2$
Assertion (A): $\frac{d^2y}{dx^2} = \frac{3}{2}$
Reason (R): $\frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ 25Let $y = \log\left(\frac{1}{1+x}\right)$
Assertion (A): $y'(1) = -1/2$
Reason (R): $xy'' + 1 = e^y$.

SOLUTIONS

1	Answer: A Solution: Every polynomial function is continuous in its domain.		
2	Answer: C Solution: Modulus function is continuous in its domain, hence (A) is correct and every continuous function at a point may not be differentiable at that point.		
3	Answer: D Solution: Greatest integer function is discontinuous at all integral values. Therefore (A) is wrong and every differentiable function at a point is continuous at that point, hence (R) is correct.		
4	Answer: D		

	Solution : if $f(x)$ is continuous at $x = a$ then $\lim_{x \to a} f(x) = f(a)$, therefore
	(R) is $x \to a$
	true
	$\lim_{x \to 3} f(x) = f(3),$
	$\lim_{x \to 3} \frac{x^2 - 5x + 3}{x - 3} = k$
	k = 1 therefore (A) is false.
5	Answer: A
	Solution : By the definition of the modulus function $\frac{ x-3 }{x-3} =$
	$\begin{cases} 1, if \ x \ge 3 \\ -1, if \ x < 3 \end{cases}$ is
	true, hence R is true.
	$LHL = \lim_{x \to 3^{-}} f(x) = f(3)$
	$LHL = \lim_{x \to 3^{-}} f(x) = f(3)$ $\lim_{x \to 3^{-}} k \frac{ x - 3 }{ x - 3 } = 5$
	k(-1) = 5 k = -5
6	Answer: C
	Solution : The greatest integer function [x] is discontinuous at all integral values
	of x and 6 integer values are there in the interval $(-2, 5)$, hence (A) is true
	The greatest integer function [x] is discontinuous at all integral values of
	x, hence R is false.
7	Answer: A
/	Solution: As per the chain rule $\frac{d}{dx}(\sin^2 x) = 2\sin x \cos x = \sin 2x$,
	(R) is correct as per the chain rule of the derivatives, hence (R) is true and
	is the correct explanation for (A).
8	Answer: D
	Solution : As per the chain rule, $d \in \mathcal{A}$
	$\frac{d}{dx}sin(cosx) = cos(cosx) \cdot \frac{d}{dx}(cosx) = -cos(cosx) \cdot sinx,$
	hence (A) is false.
	(R) is correct as per the chain rule of the derivatives, hence (R) is true
9	Answer: A $d = (-(\pi)) d (\pi)$
	Solution: $\frac{d}{dx}\sin^{-1}(\cos x) = \frac{d}{dx}\sin^{-1}\left(\sin\left(\frac{\pi}{2} - x\right)\right) = \frac{d}{dx}\left(\frac{\pi}{2} - x\right) = -1,$
1	

	hence (A) is correct and (R) is the correct explanation of (A).
10	Answer: B Solution: $\frac{d}{dx} \left[\tan^{-1} \left(\frac{\cos x - \sin x}{\cos x + \sin x} \right) \right] = \frac{d}{dx} \left[\tan^{-1} \left(\frac{1 - \tan x}{1 + \tan x} \right) \right]$
	$=\frac{d}{dx}\tan^{-1}\left(\tan\left(\frac{\pi}{4}-x\right)\right)=\frac{d}{dx}\left(\frac{\pi}{4}-x\right)=1,$
	hence (A) is correct.
	$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ is also true, hence (R) is also true but (R) is not correct
	explanation of (A).
11	Answer: A
	Solution: $\frac{d}{dx}\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \frac{d}{dx}(2\tan^{-1}x) = \frac{2}{1+x^2}$, hence (A) is correct
	$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$ is true and correct explanation for (A).
12	Answer: A
	Solution: $\frac{d}{dx}\sin^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \frac{d}{dx}\sin^{-1}(\cos 2\theta)$
	$= \frac{d}{dx} \sin^{-1} \left(\sin \left(\frac{\pi}{2} - 2\theta \right) \right) = \frac{d}{dx} \left(-2\theta \right)$
	$= \frac{d}{dx} \left(-2\tan^{-1}x \right) = \frac{-2}{1+x^2},$
	hence (A) is true $\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$ is true, hence (R) is also true and
	correct explanation for (A). $1+x^2$
13	Answer: C
	Solution: $2x + 3y = siny$ Differentiate with respect to x then
	$2 + 3\frac{dy}{dx} = \cos y \cdot \frac{dy}{dx}$
	$\frac{dy}{dx} = \frac{-2}{3 - \cos y}$ hence (A) is true
	But $2x + 3y = siny$ is an implicit function, hence (R) is false.
14	Answer: A
	Solution : $\frac{d}{dx}(e^{\log x}) = \frac{d}{dx}(x) = 1$, hence (A) is true.

	$e^{\log x} = x$ is true, hence (R) is true and (R) is the correct explanation for (A).
15	Answer: D Solution: $\frac{d}{dx}(e^{\sin x}) = e^{\sin x} \frac{d}{dx}(\sin x) = e^{\sin x} \cos x$, hence (A) is false. $\frac{d}{dx}(e^x) = e^x$ is true, hence (R) is true, hence (R) is true.
16	Answer: A Solution: $\frac{d}{dx}\log(\log x) = \frac{1}{\log x} \cdot \frac{d}{dx}\log x = \frac{1}{x\log x}$, hence (A) is true. $\frac{d}{dx}\log x = \frac{1}{x}$ is true, hence (R), hence (R) is true.
17	Answer: D Solution: $\frac{d}{dx} \log_{10} x = \frac{d}{dx} \left(\frac{\log x}{\log 10} \right) = \frac{1}{\log 10} \cdot \frac{d}{dx} \log x = \frac{1}{x \log 10}$, hence (A) is not true. $\frac{d}{dx} \log_e x = \frac{1}{x}$ is true, hence (R) is true.
18	Answer : A Solution : (A) is true and (R) is the correct explanation of (A).
19	Answer: D Solution: $\frac{d}{dx}(a^a) = 0$ as a^a is constanct, hence (A) is not true. $\frac{d}{dx}(a^x) = a^x \log a$ is true, hence (R) is true.
20	Answer: D Solution: $\frac{d}{dx}(2^{\sin x}) = 2^{\sin x} \log 2 \frac{d}{dx}(\sin x) = 2^{\sin x} \log 2 . \cos x$, hence (A) is not true. $\frac{d}{dx}(a^x) = a^x \log a$ is true, hence (R) is true.
21	Answer: A Solution: $\frac{dy}{dt} = -b \sin t$ and $\frac{dx}{dt} = a \cos t$ then $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -\frac{b}{a} \tan t$, hence (A) is true. if $y = f(t)$ and $x = g(t)$ then $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$ is true, hence (R) is true and (R) is the correct explanation of (A).
22	Answer: B

	Solution : $\frac{d}{dx}(\log x) = \frac{1}{x}$ implies $\frac{d^2}{dx^2}(\log x) = \frac{-1}{x^2}$, hence (A) is true.				
	$\frac{d}{dx}(e^x) = e^x$ is true, hence (R) is true but (R) is not correct explanation				
	of (A).				
23	Answer: A				
	Solution : $y = \log x$ implies $y' = \frac{1}{x}$				
	$\Rightarrow xy' = 1$				
	$\Rightarrow xy'' + y' = 0,$				
	hence (A) is true.				
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ is true, hence (R) is true and (R) is the correct explanation				
	of (A).				
24	Answer: D				
	Solution : $\frac{dy}{dt} = 3t^2$ and $\frac{dx}{dt} = 2t$ implies $\frac{dy}{dx} = \frac{3}{2}t$ implies $\frac{d^2y}{dx^2} = \frac{3}{2} \cdot \frac{dt}{dx} = \frac{3}{4t}$				
	^{4t'} hence (A) is not true.				
	$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2}$ is true, hence (R) is true.				
25	Answer: A				
	Solution : $y = -\log(1+x)$ implies $y' = -1/1+x$ implies $y'(1) = -1/2$, hence				
	(A) is true.				
	y' = -1/1 + x				
	\Rightarrow (1 + x) y' = -1				
	\Rightarrow y' + xy' = -1				
	$\Rightarrow xy' = -1 - y'$				
	\Rightarrow xy' + 1 = e ^y .				
	Hence (R) is true and correct explanation of (A)				

CASE STUDY QUESTIONS

	CASE STUDY 1	
	A man travel on a path given by $f(x) =$	
	$(x +3, if x \le -3)$	
	$\left\{-2x, if - 3 < x < 3, \text{ depending on the above}\right\}$	
	$\begin{cases} x + 3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3, \text{ depending on the above} \\ 6x + 2, & \text{if } x \ge 3 \end{cases}$	
	information answer the following questions.	
1	Are there any breaks in the path?	2M

2	If so where is the break in the path?
---	---------------------------------------

	CASE STUDY 2	
	Let <i>f</i> be a real valued function which is a composite of two functions <i>u</i> and <i>v</i> ; i.e., $f = v \circ u$. Suppose $t = u(x)$ and if both $\frac{dt}{dx}$ and $\frac{dv}{dt}$ exist, we have $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$. This is called chain rule in the derivatives. Basing on the above the derivative of the following.	
1	$\sec(\tan\sqrt{x})$	1M
2	$2\sqrt{\cot x^2}$	1M
3	$\cos(x^3)\sin^2x^5$	2M

	CASE STUDY 3	
	Ex1: $x - y - 6 = 0$ Ex2: $x + \sin xy - y = 0$	
	When a relationship between x and y is expressed in a way that it is easy to <i>solve for</i> y and write $y = f(x)$, we say that y is given as an <i>explicit function</i> of x . In the second case it is implicit that y is a function of x and we say that the relationship of the second type, above, gives function <i>implicitly</i> . With the above information find the derivative of the following.	
1	$y + \sin y = \cos x.$	1M
2	$x^2 + xy + y^2 = 5$	1M
3	$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$	2M

CASE STUDY 4	
Sometimes the relation between two variables is neither	
explicit nor implicit, but some link of a third variable with	
each of the two variables, separately, establishes a relation	
between the first two variables. In such a situation, we say	
that the relation between them is expressed via a third	
variable. The third variable is called the parameter. More	
precisely, a relation expressed between two variables x and y	
in the form $x = f(t)$, $y = g(t)$ is said to be parametric form	

	with <i>t</i> as a parameter. In order to find derivative of function in such form, we have by chain rule. $\frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt}$. Using the above find dy/dx in the following cases.	
1	$x = at^2$, $y = 2at$	1M
2	Find the derivative of $\sin^2 x$ with respect to $e^{\cos x}$.	1M
3	If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$ then show that $\frac{dy}{dx} = -\frac{y}{x}$	2M

	CASE STUDY 5 The derivative of a function is again differentiable then the derivative of first derivative is called second derivative. If $y = f(x)$ is a function then its first derivative is denoted by $f^{1}(x)$ or dy/dx or y_{1} and its second derivative is denoted by $f^{"}(x)$ or $\frac{d^{2}y}{dx^{2}}$ or y_{2} . Basing the given information answer the following.	
1	Find the second derivative of cos(logx)	1M
2	Find the second derivative of tan ⁻¹ x.	1M
3	If $y = \sin^{-1} x$, then show that $(1 - x^2)y_2 - xy_1 = 0$	2M

	CASE STUDY 6	
	Let $f(x)$ be a real valued function, then its	
	LEFT HAND DERIVATIVE (L.H.D):	
	L f'(a) = $\lim_{h \to 0} \frac{f(a-h) - f(a)}{-h}$	
	RIGHT HAND DERIVATIVE (R.H.D):	
	R f'(a) = $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$	
	Also, a function $f(x)$ is said to be differentiable at $x=a$ if its L.H.D and R.H.D at $x=a$ exist and are equal.	
	For the function $f(x) = \begin{cases} x-3 , x \ge 1\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, x < 1 \end{cases}$ Answer the following questions	
1	Find the R.H.D of $f(x)$ at $x=1$	1 M
2	Show that $f(x)$ is non differentiable at $x=3$	1 M

3	Find the value of f (2)	2 M
	OR	
	Find the value of $f'(-1)$	

CASE STUDY 7	
A pottery made a mud vessel, where the shape of the pot is	
height of the pot	
When $x > 4$ what will be the height in terms of x ?	1 M
Find the derivative of $f(X)$ at $x=3$	1 M
What is the function When the x value lies between (2,3).	2 M
OR	
If the potter is trying to make a pot using the function $f(x)=[x]$, will he get a pot or not? Why?	
	A pottery made a mud vessel , where the shape of the pot is based on $f(x) = x - 3 + x - 2 $, where $f(x)$ represents the height of the pot When x> 4 what will be the height in terms of x ? Find the derivative of $f(X)$ at x=3 What is the function When the x value lies between (2,3). OR If the potter is trying to make a pot using the function

	CASE STUDY 8	
	If $f(x)$ is an even function and $g(x)$ is an odd function, $ x $ is a modulus function, $[x]$ is an integer function. By using the definitions of the functions solve the following	
1	If $f(x) = \cos^2 x$ is an even function, then find whether f' (x) is an even function or odd function	1 M
2	If $f(x)=log(\frac{u(x)}{v(x)})$, $u(1)=v(1)$ and $u'(1)=v'(1)=2$ then find the value of $f'(1)$	1 M
3	If $y = x $, find $\frac{dy}{dx}$ for x	2 M
	OR	
	Show that $f(x) = x - [x]$ is discontinuous at $x=2$	

CASE STUDY 9	
Read the following passage and answer the questions give	ven
below	

	The relation between the height of the plant (y cm) with respect to its exposure to the sunlight is governed by the following equation $y=4x - \frac{1}{2}x^2$, where x is the number of days exposed to the sunlight.	
1	Find the rate of growth of the plant with respect to the number of days exposed to the sunlight	1 M
2	Does the rate of growth of the plant increase or decrease in the first three days?	1 M
3	What will be the height of the plant after 2 days?	2 M

	CASE STUDY 10	
	Three children X,Y and Z of class XII were discussing the answers after completion of the exam. They got stuck at a question regarding differentiation i.e differentiate $y=(x^2 - 5x+8)(x^2 + 7x-6)$. which each of them solved in three different ways. Check whether all the three got the same answer? verify.	
1	Solve it by product rule	1 M
2	Solve it by expanding the product to obtain a single polynomial	1 M
3	Solve it by logarithmic differentiation	2 M

CASE STUDY SOLUTIONS

	Case Study 1
1	Yes
2	At $x = 3$, LHL = 6 and RHL = 20, hence f is discontinuous at $x = 3$

	Case Study 2
1	$\frac{d}{dx}(\sec(\tan\sqrt{x})) = \sec(\tan\sqrt{x})\tan(\tan\sqrt{x})\cdot\frac{d}{dx}(\tan\sqrt{x})$
	$= \sec(\tan\sqrt{x})\tan(\tan\sqrt{x})\sec^2\sqrt{x}.\frac{d}{dx}(\sqrt{x})$
	$=\frac{1}{2\sqrt{x}}\sec(\tan\sqrt{x})\tan(\tan\sqrt{x})\sec^2\sqrt{x}$
2	$\frac{d}{dx}\left(2\sqrt{\cot x^2}\right) = -2\frac{1}{2\sqrt{\cot x^2}}\csc^2(x^2).\frac{d}{dx}(x^2)$

$$= -\frac{2x}{\sqrt{\cot x^2}} \csc^2(x^2)$$

$$3 \qquad \frac{d}{dx}(\cos(x^3)\sin^2x^5) = \sin^2x^5\frac{d}{dx}(\cos(x^3)) + \cos(x^3)\frac{d}{dx}(\sin^2x^5)$$

$$= -3x^2\sin^2x^5.\sin x^3 + 10x^4\sin x^5\cos x^5\cos x^3$$

	Case Study 3
1	$\frac{d}{dx}(y + \sin y) = \frac{d}{dx}(\cos x)$ $\rightarrow \frac{dy}{dx} + \cos y \frac{dy}{dx} = -\sin x$ $\rightarrow \frac{dy}{dx} = -\frac{\sin x}{1 + \cos y}$
2	$\frac{d}{dx}(x^2 + xy + y^2) = \frac{d}{dx}(5)$ $\rightarrow 2x + x\frac{dy}{dx} + y + 2y\frac{dy}{dx} = 0$ $\rightarrow \frac{dy}{dx} = -\frac{2x+y}{x+2y}$
3	$y = \cos^{-1}\left(\frac{2x}{1+x^2}\right) \to y = \cos^{-1}\left(\cos\left(\frac{\pi}{2} - 2\tan^{-1}x\right)\right)$
	$\rightarrow y = \frac{\pi}{2} - 2 \tan^{-1} x \rightarrow \frac{dy}{dx} = -\frac{2}{1+x^2}$

	Case Study 4
1	$x = at^{2} \rightarrow \frac{dx}{dt} = 2at$ $y = 2at \rightarrow \frac{dy}{dt} = 2a$ $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$
2	Let $u = \sin^2 x$ and $v = e^{\cos x}$ $\frac{du}{dv} = \frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2\sin x \cos x}{-\sin x \cdot e^{\cos x}}$

$$x = \sqrt{a^{\sin^{-1}t}} \rightarrow \log x = \frac{1}{2} \sin^{-1} t \log a \rightarrow \frac{1}{x} \cdot \frac{dx}{dt} = \frac{1}{2} \log a \cdot \frac{1}{\sqrt{1 - t^2}}$$

Similarly $y = \sqrt{a^{\cos^{-1}t}} \rightarrow \frac{dy}{dt} = \frac{1}{y} \cdot \frac{dy}{dt} = -\frac{1}{2} \log a \cdot \frac{1}{\sqrt{1 - t^2}}$
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = -\frac{y}{x}$$

OR
$$xy = \sqrt{a^{\cos^{-1}t + \sin^{-1}t}} \rightarrow xy = \sqrt{a^{\pi/2}}$$

Diff w.r.t. x
$$x \frac{dy}{dx} + y \cdot 1 = 0 \rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

	Case Study 5
1	$\frac{d}{dx}(\cos(\log x)) = -\frac{1}{x}\sin(\log x)$ $\frac{d^2}{dx^2}(\cos(\log x)) = -\frac{d}{dx}\left(\frac{1}{x}\sin(\log x)\right)$ $= -\left\{\frac{1}{x}\cdot\frac{1}{x}\cos(\log x) - \frac{1}{x^2}\sin\log x\right\}$ $= \frac{1}{x^2}\sin\log x - \frac{1}{x^2}\cos(\log x)$
2	$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$ $\frac{d^2}{dx^2}(\tan^{-1}x) = \frac{d}{dx}\left(\frac{1}{1+x^2}\right) = -\frac{2x}{(1+x^2)^2}$
3	$y = \sin^{-1} x \rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \rightarrow \sqrt{1 - x^2} y_1 = 1 \rightarrow (1 - x^2) y_1^2 = 1$ $\rightarrow (1 - x^2) 2y_1 y_2 - 2x y_1^2 = 0 \rightarrow (1 - x^2) y_2 - x y_1 = 0$

Case Study 6	
$f(x) = \begin{cases} 3-x, 1 \le x < 3\\ x-3, x \ge 3\\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, x < 1 \end{cases}$	

	$f'(x) = \begin{cases} -1, 1 \le x < 3\\ 1, x \ge 3\\ \frac{x}{2} - \frac{3}{2}, x < 1 \end{cases}$
1	R.H.D of $f(x) = \frac{d}{dx} (3-x) = -1$
2	At x=3 L.H.D \neq R.H.D
3	$f'(2)=-1$ OR $f^{-1}(-1)=-2$

	Case Study 7
	$\begin{pmatrix} -2x+5, x<2\\ 1, 2 \leq x \leq 2 \end{pmatrix}$
	$f(x) = \begin{cases} -2x + 5, x < 2\\ 1, 2 \le x < 3\\ 2x - 5, x \ge 3 \end{cases}$
1	2x-5
2	not differentiable at x=3
3	1 or NO ,because greatest integer function is not differentiable.

	Case Study 8
1	$f'(x) = -2\cos x \cdot \sin x$
	f '(-x)=-2 cosx (-sinx)= 2cosx.sinx which is an even function.
2	$f(x) = \log u(x) - \log v(x)$
	$f(x) = \log u(x) - \log v(x)$ $f'(x) = \frac{u'(x)}{u(x)} - \frac{v'(x)}{v(x)}$ $f'(1) = \frac{u'(1)}{u(1)} - \frac{v'(1)}{v(1)} = 0$
	f ' (1)= $\frac{u'(1)}{u(1)} - \frac{v'(1)}{v(1)} = 0$
3	$y=-x^2$ for x<0, $\frac{dy}{dx}=-2x$
	OR
	L.HL=1 and RHL =0 not continuous at x=2

	Case Study 9
1	$\frac{dy}{dx} = 4 - \mathbf{X}$
2	Let rate of growth be represented by $g(x) = \frac{dy}{dx}$

	g'(x)= $\frac{d}{dx}(\frac{dy}{dx})$ =-1<0, g(x) decreases. So the rate of growth of the plant decreases for the first three days.
3	Height of the plant after 2 days =4x2 - $(\frac{1}{2}2^2) = 6$

	Case Study 10
1	Y=UV, by using product rule, $\frac{dy}{dx} = (x^2-5x+8)(2x+7)+(x^2+7x+6)(2x-5)$ on simplification $\frac{dy}{dx} = 4x^3 + 6x^2 - 66x + 86$
2	On expansion, $y=x^4 + 2x^3 - 33x^2 + 86x - 48$ then $\frac{dy}{dx}$ is same as 1
3	Apply log, logy= log(x ² - 5x+8)(x ² + 7x-6). logy= log (x ² - 5x+8)+log(x ² + 7x-6). After differentiation $\frac{1}{y}\frac{dy}{dx} = \frac{2x-5}{x^2-5x+8} + \frac{2x+7}{x^2+7x+6}$ $\frac{dy}{dx} = y(\frac{(2x-5)(x^2+7x-6)+(2x+7)((x^2-5x+8))}{y})$
	After simplification $\frac{dy}{dx}$ is same as 1 and 2.

CHAPTER : APPLICATION OF DERIVATIVES ASSERTION AND REASONING QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a
statement of Reason (R). Choose the correct answer out of the following
choices:

- (a) Both assertion (A) and reason (R) are true and the Reason (R) is the correct explanation of the assertion (A).
- (b)Both Assertion (A) and Reason (R) are true, but Reason(R) is not the correct explanation of the assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.

1	Assertion(A): The function $f(x) = [x (x + 2)^2]$ is increasing in (0,1) U(2, ∞)
	Reason (R): $\frac{dy}{dx} = 0$, when $x = 0$, 1, 2
	Assertion(A): $f(x) = \frac{1}{x-7}$ is decreasing in $x \in R - \{7\}$
2	Reason (R): $f^{1}(x) < 0$, for all $x \neq 7$
3	Assertion (A): $f(x) = e^x$ is an increasing function for all $x \in R$
	Reason (R): If $f^{1}(x) \le 0$, then $f(x)$ is an increasing function.
4	Assertion (A) : $f(x) = \log x$ is defined for all $x \in (0, \infty)$
	Reason (R): If $f^1(x) > 0$ then $f(x)$ is strictly increasing function.
	Assertion (A): If $f(x) = Log(sin x)$, $x > 0$ is strictly decreasing
5	$in\left(\frac{\pi}{2},\pi\right)$
	Reason (R): If $f^1(x) \ge 0$ then $f(x)$ is strictly increasing function.
6	Assertion (A): If $f(x) = a(x + \sin x)$ is increasing function if
	$a \in (0, \infty)$
	Reason (R): The given function $f(x)$ is increasing only if $a \in (0, \infty)$

	24
	Assertion (A): The function $y = \log(1 + x) - \frac{2x}{2 + x}$, $x > -1$ is a
7	decreasing function throughout its domain
	Reason (R): $\frac{dy}{dx} > 0$ if $x \in (-1, \infty)$
	Reason (R). $\frac{1}{dx} > 0$ if $x \in (-1, \infty)$
8	Assertion (A): $f(x) = \frac{5}{x} + 2$ is decreasing in R – { 0 }
	Reason (R): The above mentioned function is increasing in R
	Assertion (A): The rate of change of a circle with respective
9	r is $2\pi r$
	Reason (R): $\frac{dy}{dx}$ represents the rate of change of y with
	dx respective x
	respective x
	Assertion (A): The rate of change of volume of a sphere with
10	respective its radius is increasing.
10	Reason (R): $\frac{dV}{dr} > 0$
	Reason (R): $\frac{1}{dr} > 0$
11	1
11	Assertion (A): $f(x) = x - \frac{1}{x}$ is strictly increasing in R – { 0 }
	Reason (R): A function $f(x)$ is called decreasing in I if
	$f^1(x) < 0$ for all $x \in I$
	Assertion (A): $f(x) = (x - 1)e^x + 1$ is an increasing
12	function for all $x > 0$
	Reason (R): $f^{1}(x) > 0$ for all $x \in (0, \infty)$
	Assertion (A): The rate of change of the area of circle with
13	respective radius r when $r = 3$ cm is 6π cm ² /cm
	Reason (R): $\frac{dA}{dr}$ at r = 3
	ar
14	Assertion (A) : $f(x) = x^2 e^{-x}$ is increasing in (0, 2)
	Reason (R) : $f(x)$ is decreasing in $(2, \infty)$
	Assertion (A): $f(x) = x^2 - x + 1$ is neither increasing nor
15	decreasing on (-1, 1)
	Reason (R): If $f^1(x) > 0$ then $f(x)$ is strictly increasing
	function for all $x \in I$
	Assertion (A): $f(x) = - x + 1 + 3$ is defined for all real values
16	
	of x except $x = -1$
	Reason (R) : Maximum value of $f(x)$ is 3 and Minimum value does
	not exists
	HOU ONIDED

	Assertion (A) : $f(x) = \sin 2x + 3$ is defined for all real values of x.
17	Reason (R) : Minimum value of $f(x)$ is 2 and Maximum value is 4.
	Reason (R) : within turn value of $f(x)$ is 2 and waxin turn value is 4.
10	
18	Assertion (A): For $f(x) = x + \frac{1}{x}$ maximum and minimum values
	both exists.
	Reason (R): Maximum value of $f(x)$ is less than its minimum
	value
19	
	Assertion (A):If m and M are respectively minimum and maximum values of
	$f(x) = (x - 1)^2 + 3$ for all $x \in [-3, 1]$ then $(m, M) = (f(1), f(-3))$
	Reason (R): $f(x)$ is strictly increasing on $[-3,1]$
20	Assertion (A): $f(x) = Sin(Sin x)$ is defined for all real value of x Basson (B): Minimum and maximum values does not exist
	Reason (R): Minimum and maximum values does not exist
21	Assertion (A): $f(x) = e^x$ has no minimum and maximum values
	Reason (R): f(x) has no critical points
22	Assertion (A) $f(x) = - x + 1 + 3$ is defined for all real values of
	$x \operatorname{except} x = -1$
	Reason (R) : Maximum value of $f(x)$ is 3 and Minimum value does
	not exist.
23	Assertion (A): $f(x) = \sin 2x + 3$ is defined for all real values of x.
	Reason (R) : Minimum value of $f(x)$ is 2 and Maximum value is 4.
	A. Both A and R are true and R is the correct explanation of A
24	Assertion (A): For $f(x) = x + \frac{1}{x}$ maximum and minimum values
	both exists.
	Reason (R) : Maximum value of $f(x)$ is less than its minimum value.
	$\mathbf{x} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$
25	Assertion (A): If two positive numbers are such that their sum is 16
23	
	and sum of the cubes is minimum, then the numbers

are 8, 8. **Reason (R):** If f be a function defined on an interval I and $c \in I$ and let f be twice Differentiable at c, then x = c is a point of local minima if f(x) = 0 and f''(c) > 0 and f(c) local minimum value of f.

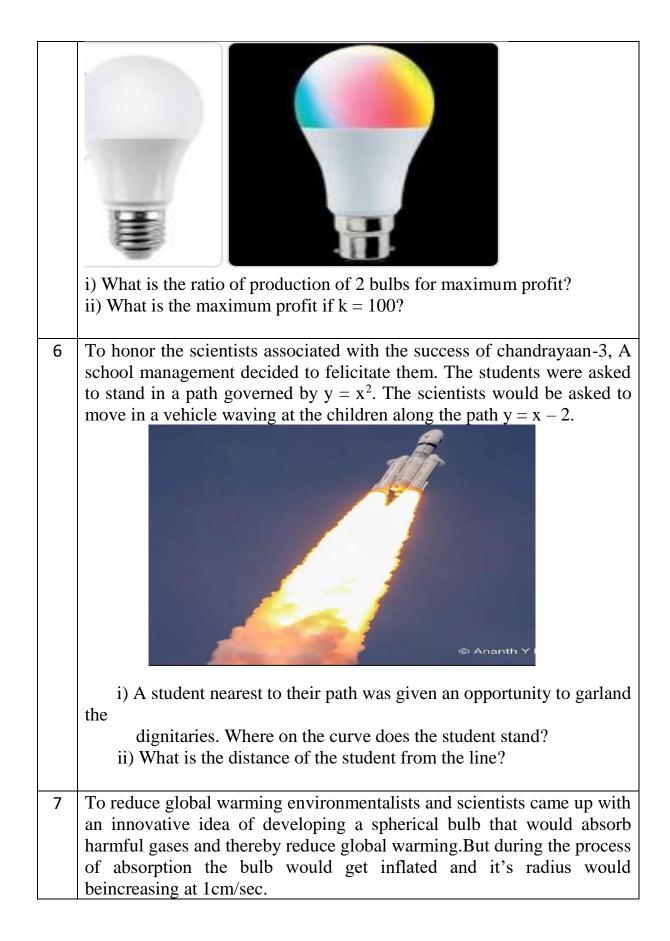
ANSWERS:

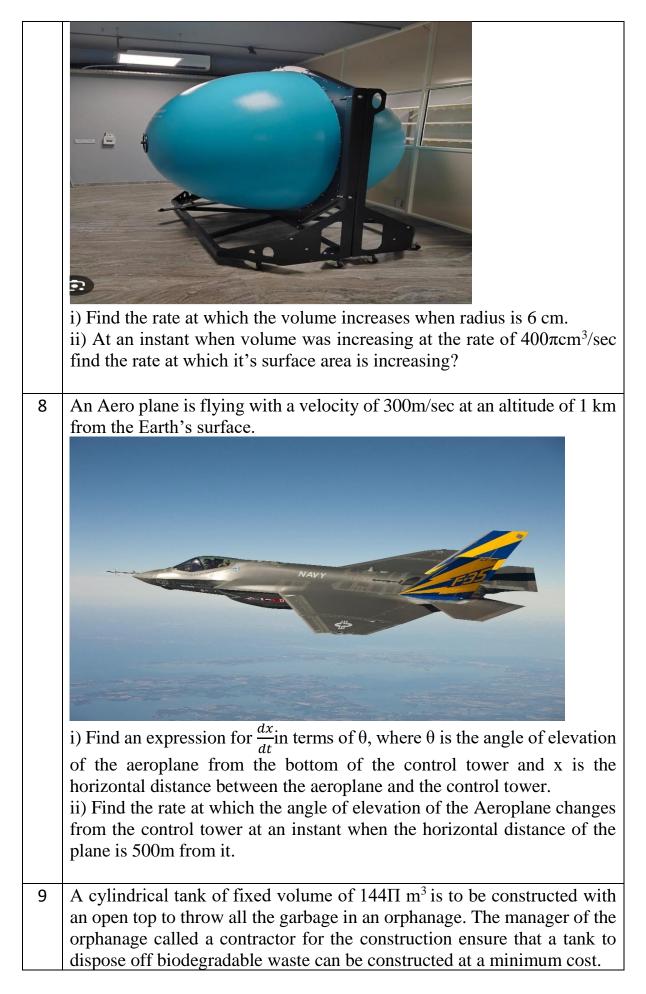
Г

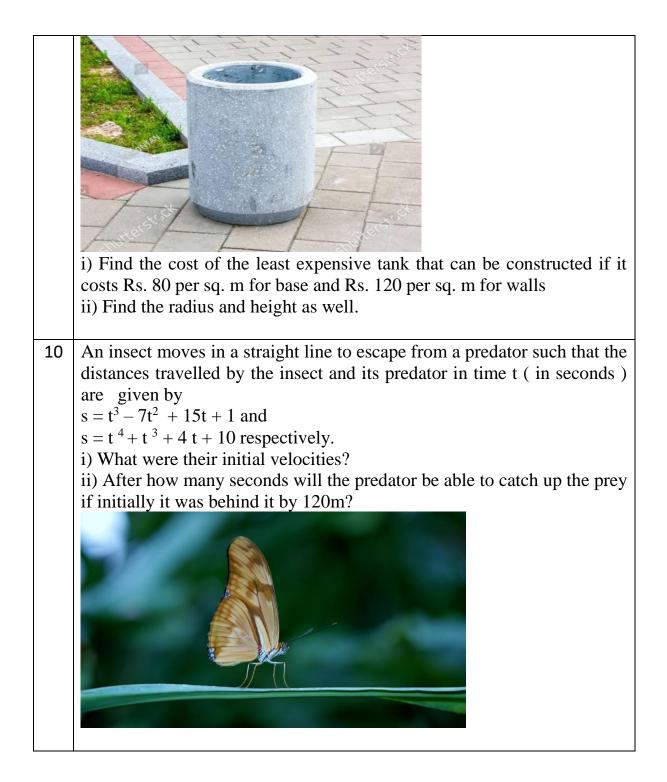
1	Assertion is true since $f^1(x) > 0$, $x \in (0, 1) \cup (2, \infty)$ Reason is true but not the correct explanation of A
	Ans : (b)
2	Assertion is true since $f^{1}(x) = \frac{-1}{(x-7)^{2}}$ $f^{1}(x) < 0$, $x \in R - \{7\}$ Reason is true and it is the correct explanation of A
	Ans : (a)
3	$f^{1}(x) = e^{x}$ $\Rightarrow f^{1}(x) > 0$ So it is an increasing function $\Rightarrow R \text{ is not true as it is mentioned that } f^{1}(x) \le 0$ Ans : (c)
4	$f^{1}(x) = \frac{1}{x} > 0 \text{ for all } x \in (0, \infty)$ ⇒ f(x) is an increasing function So A & R both are true and R is the correct explanation of A Ans : (a)
5	f ¹ (x) = $\frac{Cosx}{sinx}$ = Cotx > 0 where x $\in (\frac{\pi}{2}, \pi)$ So f is an increasing function
	$\Rightarrow Assertion is wrong \\\Rightarrow Reason is true$
	Ans (d)
6	$f^{1}(x) = a(1 + \cos x) > 0 \text{ if } a \in (0, \infty)$ So f is an increasing function \Rightarrow Assertion is wrong

	\Rightarrow Reason is true
	Ans (d)
7	Here $\frac{dy}{dx} = \frac{x^2}{(x+1).(x+2)^2} > 0$
	So f is an increasing function
	$\Rightarrow Assertion is wrong \\\Rightarrow Reason is true$
	Ans (d)
8	$f^{1}(x) = \frac{-5}{x^{2}} < 0$
	$f(x)$ is decreasing in $R - \{0\}$
	Assertion (A) is true but Reason (R) is false.
	Ans : (c)
	$A = \pi r^2$
9	$\Rightarrow \frac{dA}{dr} = 2\pi r$
	Both assertion (A) and reason (R) are true and the Reason (R) is the correct explanation of the assertion (A).
	contect explanation of the assertion (A).
	Ans: (a)
10	Both assertion (A) and reason (R) are true and the Reason (R) is the correct explanation of the assertion (A).
	Ans : (a)
	$f^{1}(x) = 1 + \frac{1}{x^{2}} > 0$ is increasing function
11	Therefore Both Assertion (A) and Reason (R) are true, but Reason(R) is
	not the correct explanation of the assertion (A).
	Ans (b)
12	$f^{1}(x) = e^{x} + (x - 1) e^{x}$ f^{1}(x) = x.e ^x >0 is an increasing function
	Both assertion (A) and reason (R) are true and the Reason (R) is the
	correct explanation of the assertion (A). Ans : (a)
	$A = \pi r^2$

13	$\frac{dA}{dr} = 2\pi r$
	$\frac{dr}{dr}$ at r = 3 is 6π cm ² /cm
	Ans : (a)
14	$f^{1}(x) > 0$ for all $x \in (0, 2)$ Assertion (A) is true but Reason (R) is false.
17	
	Ans: (C)
15	Both Assertion (A) and Reason (R) are true, but Reason(R) is not the correct explanation of the assertion (A).
	Ans : (b)
16	Ans:(a)
15	Since $-1 \le \sin 2x \le 1 \rightarrow 2 \le \sin 2x + 3 \le 4$
17	Ans : (a)
18	$y = f(x) = x + \frac{1}{x}, f'(x) = 1 - \frac{1}{x^2}, f'(x) = 0 \to x = \pm 1$
10	$f''(x) = \frac{2}{x^3}, f''(-1) = -2 < 0, f(x)$ is maximum at $x = -1$
	And max value is $f(-1) = -2$, $f''(1) = 2 > 0$, $f(x)$ is
	minimum at $x = 1$
	And minimum value is $f(1) = 2$ Ans : (a)
	$f'(x) = 2(x - 1)0$ for all $x \in [-3, 1]$
19	f(x) is decreasing on $[-3,1]$, $f(-3) = 19 = M$, $f(1) = 3 = m$
	Ans: (a)
	Assertion (A) is true but Reason (R) is false.
20	
	Ans:(c)


21	Ans : (a)
22	Ans. A
23	Ans. A
	Explanation $-1 \le \sin 2x \le 1 \rightarrow 2 \le \sin 2x + 3 \le 4$
24	Ans. A.
	Explanation.
	$y = f(x) = x + \frac{1}{x},$
	$f'(x) = 1 - \frac{1}{x^2},$
	$f'(x) = 0 \rightarrow x = \pm 1$
	$f''(x) = \frac{2}{x^3}, f''(-1) = -2 < 0,$
	f(x) is maximum at $x = -1$
	And max value is $f(-1) = -2$,
	f''(1) = 2 > 0,
	f(x) is minimum at $x=1$
	And minimum value is $f(1) = 2$
25	Ans. A.
	Explanation.
	Let the numbers be $x \& y, x + y = 16$ and
	$f(x) = x^3 + y^3 = x^3 + (16 - x)^3$
	$f'(x) = 3x^2 - 3(16 - x)^2, f'(x) = 0 \rightarrow x = 8 f''(8) = 96 > 0$
	f(x) is minimum at x=8 when x = 8, y = 8 ∴ the numbers are 8,8.


CASE BASED QUESTIONS


1	Mr.Suresh who is a popular businessman consulted a share market expert
	Mr.Suresh who is a popular businessman consulted a share market expert to know about the investment in a particular company. He predicted that
	the trend of the company would be governed by the function
	$f(x) = \frac{x^3}{3} - 4x^2 + 15x + 8$ where x is the years of investment in the company.

	 i. In the first ten years when will he get growth in his investment? ii. There is going to be a lean patch in the investment. When is it going happen? When will the market pick up again?
2	Rain Water Harvesting pits are very essential to conserve water and use it
	furtheruse. An engineer was asked to design a cuboidal pit with a fixed volu of 256m ³ and with a square base
	i. What will be the value of edge of base so that total surface minimum?ii. Find the height of tank and also the total surface area?
3	The soaring prices of tomatoes in our country in the recent part made the Trade Analysts to come up with an equation
	$f(x) = 16x - \frac{1}{2}x^2$
	To find the cost of 1kg of tomatoes after x days.

	After how many days will the cost of tomatoes be maximum? What will be the maximum cost? ii. When will the cost of tomatoes become Rs.64?
4	The Maths and crafts teachers of a school planned to assign a task to the students. A paper of area 'k' sq.uts was given to each one them and were asked to make a cylinder closed at one end and open at the other.
5	A company was given contract to manufacture two varieties of bulbs A & B which will be sold at profits of Rs. 60 & Rs. 80 respectively. There was a condition that sum of squares of the number of bulbs of each type is a constant k.

ANSWERS

1
$$f'(x) = x^2 - 8x + 15$$

For critical points, $f'(x) = 0$
 $x^2 - 8x + 15 = 0$
 $x = 3, x = 5$
In (0, 3), $f'(x) > 0$ and in (3, 5) $f'(x) < 0$
By first derivative test f has maxima at $x = 3$

ii) when x > 5, f'(x) > 0 f is Strictly decreasing in (3, 5) ---- lean patch i) Given $V = 256 \text{ m}^3$, 2 $1^{2}h = 256$ h = $\frac{256}{l^2}$ S = 1² + 4 lh $S = 1^{2} + 41 X \frac{256}{l^{2}} = f(1)$ $f'(1) = 21 - \frac{1024}{l^2}$ for critical points, f'(1) = 0so we get l = 8mby second derivative test f has minima at l = 8m as f''(I) > 0 ii) h = $\frac{256}{l^2}$ so h = 4mS = f(8) $= 192 \text{ m}^2$ 3 $f(x) = 18x - \frac{1}{2}x^2$ f '(x)=18-x for critical points, f '(x)=0 x=18 f'(x) = -1 < 0f''(18) = -1 < 0by second derivative test f has maxima at x = 18maximum cost = $18 \times 18 - \frac{1}{2}x^2$ = Rs. 162 ii) $18x - \frac{1}{2}x^2 = 64$ $36x - x^2 = 128$ $X^2-36x+128=0$ X=4.1. $2\pi rh + \pi r^2 = k$ 4 h = k- $\pi r^2/2 \pi r$ $v = \pi r^2 h$ $=\pi r^2(k-\pi r^2/2\pi r)$ $V = f(r) = \frac{1}{2}(kr - \pi r^3)$ $f'(r) = \frac{1}{2}(k-3\pi r^2)$

	f'(r) = 0
	$\Rightarrow \qquad r = \sqrt{k/3\pi}$
	$f''(r) = -3\pi r$
	$f''(\sqrt{k/3\pi}) = -3 \pi \sqrt{k/3\pi} < 0$
	by second derivative test,
	f has local max at $r=\sqrt{k/3\pi}$
	ii) h= $(3\pi r^2 - \pi r^2)/2\pi r$
	$\Rightarrow \qquad h = 2\pi r^2 / 2\pi r$
	$\mathbf{h} = \mathbf{r}$
5	1. let A & B variety bulbs be x & y respectively.
	$X^2 + y^2 = k$
	$Y = \sqrt{(k - x^2)}$
	Profit=60x + 80y
	$f(x) = 60x + 80\sqrt{(k - x^2)}$
	f'(x) = 0
	$25x^2 = 9k$
	$X = \frac{3}{5}\sqrt{k}$
	$f''(x) = -80(2k/2(k-x^2)^{3/2}) < 0$
	f has max at $x = \frac{3}{5}\sqrt{k}$
	$y = \frac{4}{5}\sqrt{k}$
	• $x: y=3:4$
	ii) profit= $60 \ge \frac{3}{5} \ge 10+80 \ge \frac{4}{5} \ge 10$
	5 5
	= R1000
6	1. let points on $y = x^2$ be A=(t, t ²)
	X - Y - 2 = 0
	distance = I t - t ² - 2 I/ $\sqrt{2}$
	$f(t) = (t - t^2 - 2) / \sqrt{2}$
	$f'(t) = (2t-1)/\sqrt{2}$
	f'(t) = 0
	$t = \frac{1}{2}$
	$f''(t) = 2/\sqrt{2}$
	$f''(1/2) = \sqrt{2} > 0$
	f has min at $t = \frac{1}{2}$
	$\therefore A = (1/2, 1/4)$
	ii) distance = $((\frac{1}{2})^2 - \frac{1}{2} + 2)/\sqrt{2}$
	$=\frac{7}{4\sqrt{2}}$ units.

7
7

$$\frac{dr}{dt} = \operatorname{lcm/sec}$$

i) $V = 4/3\pi t^{3}$
 $dv/dt = 4\pi^{2}dr/dt$
 $(dv/dt)_{r=0} = 4\pi 36 \text{ x 1}$
 $= 144\pi \text{ cm}^{3/\text{sec}}$
ii) Given $dv/dt = 400\pi$
 $4\pi^{2}dr/dt = 400\pi$
 $r = 10 \text{ cm}$
 $s = 4\pi r^{2}$
 $ds/dt = 8\pi t dr/dt$
 $(ds/dt)_{r=10} = 8\pi \text{ x 10 x 1}$
 $= 80\pi \text{ cm}^{2/\text{sec}}$
8

1000m
x
x
x
1000m
x
x
1000m
x
x
x
x
1000m
x
x
x
x
1000m
x
x
x
x
1000 cose²0 $\frac{d\theta}{dt}$
 $\frac{dt}{dt} = -1000 \text{ cose20} $\frac{d\theta}{dt}$
 $\frac{d\theta}{dt} = -1000 \text{ cose20} $\frac{d\theta}{dt}$
 $\frac{d\theta}{dt} = -\frac{14411}{25 \text{ sec}}$
9
IIr²h = 144II
h = $\frac{144}{r^{2}}$
Area = IIr² + 2IIrh
Cost = 80 X IIr² + 120 X 2IIrh
Substituting h = $\frac{144}{r^{2}}$$$

	Cost = f(r)
	$= 80 \text{ X } \Pi r^2 + \frac{34560 \Pi}{r}$
	$f'(r) = 160 \Pi r - \frac{34560 \Pi}{r^2}$
	for critical points $f'(r) = 0$,
	we get $r = 6m$
	f '' (r) = $160\Pi + \frac{69120\Pi}{r^3} > 0$ for r = 6
	so by second derivative test,
	cost is minimum at $r = 6m$
	minimum $cost = f(6)$
	$= \frac{\text{Rs. 8640}\Pi}{\text{Rs. 8640}\Pi}$
10	i) initial velocities:
	$Prey \longrightarrow \frac{ds}{dt} = 3 t^2 - 14t + 15$
	Initial velocity ($t = 0$) = 15m/sec
	Predator $\rightarrow \frac{ds}{dt} = 4 t^3 + 3 t^2 + 4$
	Initial velocity ($t = 0$) = 4m/sec
	iii) Let it catch the prey after t seconds,
	Difference in distances $= 120m$
	$(t^4 + t^3 + 4t + 10) - (t^3 - 7t^2 + 15t + 1) = 120$
	$(t^4 + 7t^2 - 11t + 9 = 120)$
	Solving it we get $t = 3$ seconds

CHAPTER: INTEGRALS

ASSERTION REASONING QUESTIONS

	ASSERTION REASONING QUESTIONS
	 In the following question a statement of Assertion (A) is followed by a statement of Reason (R). Pick the correct option: (a)Both A and R are true and R is the correct explanation of A. (b)Both A and R are true and R is NOT the correct explanation of A. (c) A is true but R is false. (d)A is false but R is true.
1	Assertion (A): $\int_0^{\pi} \cos x dx = 2$ Reason (R) : The function $f(x) = \cos x$ is decreasing in $[0, \pi]$
2	Assertion (A): $\int_0^{\pi/2} \cos 2x dx = 1$ Reason (R): The function $\cos 2x$ is decreasing in $[0, \frac{\pi}{2}]$
3	Assertion (A): $\int_{\pi/2}^{3\pi/2} \sin x dx = 2$ Reason (R): The function sin x is decreasing in $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$
4	Assertion (A): $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \sin 2x dx = 1$ Reason (R): The function sin 2x is decreasing in $[\frac{\pi}{4}, \frac{3\pi}{4}]$
5	Assertion (A): $\int_{-\pi/2}^{\pi/2} \sin^7 x dx = 0$ Reason(R): $\int_{-a}^{a} f(x) dx = 0$, if f is an odd function
6	Assertion (A): $\int_{-1}^{1} \log(\frac{2-3x}{2+3x}) dx = 0$ Reason: $\int_{-a}^{a} f(x) dx = 0$, if f is an odd function
7	Assertion (A): $\int e^x (sinx - \cos x) dx = -e^x cos x + C$ Reason (R) $: \int e^x (f(x) + f'(x)) dx = e^x f(x) + C$
8	Assertion (A): $\int e^x (\cos x - \sin x) dx = -e^x \sin x + C$ Reason(R) : $\int e^x (f(x) + f'(x)) dx = e^x f(x) + C$
9	Assertion (A): $\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx = e^x \frac{1}{x} + C$ Reason(R) : $\int e^x (f(x) + f'(x)) dx = e^x f(x) + C$
10	Assertion (A): $\int_0^{10} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{10 - x}} dx = 10$ Reason R) : $\int_0^a f(x) dx = \int_0^a f(a - x) dx$
11	Assertion (A): $\int \frac{x-3}{(x-1)^3} e^x dx = \frac{e^x}{(x-1)^2} + c$ Reason (R) : $\int e^x (f(x) + f'(x)) dx = e^x f(x) + c$
	•

10	. –1
12	Assertion (A): $\int \frac{e^{tan^{-1}x}}{1+x^2} dx = e^{tan^{-1}x} + C$
	Reason (R) : $\frac{d}{dx} (e^{tan^{-1}x}) = \frac{e^{tan^{-1}x}}{1+x^2}$
13	Assertion (A): $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = e^x \log(x+1) + e^x + c$
	Reason(R) : We have $\int e^x (f(x) + f'(x)) dx = e^x f(x) + c$
14	Assertion (A): $\int_{0}^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ is equal to $\frac{\pi}{2}$
	Reason(R) : $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
15	Assertion (A): $\int_{0}^{\frac{\pi}{2}} \sin^2 x dx = \frac{\pi}{4}$
	Reason(R) : $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$
16	
	Assertion (A): $\int_{-1}^{1} (x^3 + \sin x) dx = 0$
17	Assertion (A): $\int x^{x}(1 + \log x) dx = x^{x} + C$
	Reason (R) : $\frac{d}{dx}(x^x) = x^x(1 + \log x)$
18	Assertion (A): $\int_{-\pi/2}^{\pi/2} \cos^7 x dx = 0$
	Reason(R) : $\int_{-a}^{a} f(x) dx = 0$, if f is an odd function
19	Assertion (A): $\int \sqrt{1-x^2} dx = \frac{x}{2}\sqrt{1-x^2} + \frac{1}{2}\sin^{-1}(x) + c$
	Reason(R) : $\frac{d}{dx}(\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}(x)+c) = \sqrt{1-x^2}$
20	1/2
	Assertion (A): $\int_{-1/2}^{1/2} \cos x \cdot \log(\frac{2-3x}{2+3x}) dx = 0$
	Reason(R) : $\int_{-a}^{a} f(x) dx = 0$, if f is an odd function
21	Assertion (A): $\int_{-1}^{1} x x dx = 2/3$ sq. units
	Reason(R) : $ x = \{ x, if x \ge 0 \\ -x, if x < 0 \}$
22	Assertion (A): $\int_{-1}^{1} x dx = 1$ sq. units
	Reason(R) :the derivative of modulus function $f(x) = x $ does not exist at 0
23	Assertion (A): $\int e^{5logx} dx$ is equals to $\frac{x^6}{6} + c$
	Reason(R) : We have $\int e^{\log x} = x$
24	Assertion (A): $\int x^2 e^{x^3} dx = \frac{1}{3}e^{x^3} + c$
	Reason(R) : $\int e^x dx = e^x + c$
25	Assertion (A): $\frac{d}{dx}(f(x)) = \log x$, then $f(x) = \frac{1}{x} + c$

	Reason(R) : $\int f(x)g(x)dx = f(x)\int g(x)dx - \int [f'(x)\int g(x)dx]dx$
26	Assertion(A): $\int \frac{x-3}{(x-1)^3} e^x dx$ is equal to $\frac{e^x}{(x-1)^2} + c$
	Reason(R): We have $\int e^{x}(f(x)+f'(x)) dx = e^{x}f(x)+c$
27	Assertion (A): Anti derivative of $\frac{\tan x - 1}{\tan x + 1}$ with respect to x is $\log \left \sec \left(\frac{\pi}{4} - x \right) \right + c$
	Reason(R) : $\int \tan x dx = \log \sec x + c$
28	Assertion(A): $\int \frac{e^{x}(1+x)}{\cos^{2}(xe^{x})} dx$ is equal to $\tan(xe^{x}) + c$
	Reason(R) : $\int \sec^2 x dx = \tan x + c$
29	Assertion(A): $\int \frac{dx}{16+9x^2}$ is equal to $\frac{1}{3} \tan^{-1}\left(\frac{3x}{4}\right) + c$
	Reason(R) : $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + c$
30	Assertion(A): $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin^7 x dx = 0$
	Reason (R): $\int_{-a}^{a} f(x) dx = 0$ if f is an odd function
31	Assertion (A): $\int_{-5}^{5} x + 2 dx = 29$
	Reason(R): $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
32	Assertion(A): If the value of $\int_0^a 3x^2 dx = 8$ then the value of 'a' is 2
	Reason(R): $\int x^n dx = \frac{x^{n+1}}{n+1} + c$
32(a)	Assertion(A): $\int \sec^2(7-4x) dx = a \tan(7-4x) + c$ then the value of a is $\frac{-1}{4}$
	Reasoning(R): $\int f(ax+b)dx = \frac{F(ax+b)}{a} + c$
33	Assertion(A): $\int \frac{1}{\sqrt{4-9x^2}} dx = \frac{1}{3} \sin^{-1}(ax) + c$, then a is $\frac{3}{2}$
	Reason(R) : $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(x/a) + c$
34	Assertion(A) : The value of $\int_2^3 \frac{x}{x^2+1} dx$ is equals to $\frac{1}{2} \log 2$
	Reasoning(R): $\int x^n dx = \frac{x^{n+1}}{n+1} + c$
35	Assertion(A): $\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos x} dx = 2$
	Reasoning(R): $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1}(x/a) + c$
36	Assertion(A): $\int \frac{(logx)^2}{x} dx = \frac{(logx)^3}{3} + c$
	Reason(R): $\int \frac{1}{x} dx = \log x + c$

INTEGRALS- ANSWERS

ASSERTION REASONING QUESTIONS

-	ASSERTION REASONING QUES	
1	Ans:b) Solution: $\int_{0}^{\pi} y dx = \int_{0}^{\pi/2} \cos x dx + \left \int_{\pi/2}^{\pi} \cos x dx \right $ $= \sin x \Big _{0}^{\pi/2} + \left \sin x \right _{\pi/2}^{\pi} \Big = 1 + 1 = 2$	0 π/2 2π -1
2	Ans:b) Solution: $\int_{0}^{\pi/2} y dx$ $\int_{0}^{\pi/4} \cos 2x dx + \left \int_{\pi/4}^{\pi/2} \cos 2x dx \right $ $= \frac{1}{2} \sin 2x \Big]_{0}^{\pi/4} + \left \frac{1}{2} \sin 2x \right]_{\pi/4}^{\pi/2} \Big $ $= \frac{1}{2} + \frac{1}{2} = 1$ sq. units	= f(x)=cos 2x 0 -0.5 -1 -1 -1
3	Ans:b) Solution: ${}^{3\pi/2} \int_{\pi/2} \sin x dx$ $= \int_{\pi/2}^{\pi} \sin x dx + \left \int_{\pi}^{3\pi/2} \sin x dx \right $ $= -\cos x]_{\pi/2}^{\pi} + \left -\cos x \right]_{\pi}^{3\pi/2} $ = 1+1=2	-1 -1 -1 -1 -1 -1 -1 -1
4	Ans:b) $\int_{0}^{\pi/2} y dx = \int_{\frac{\pi}{4}}^{\pi/2} \sin 2x dx + \left \int_{\pi/2}^{\frac{3\pi}{4}} \sin 2x dx \right $ $= \frac{-1}{2} \cos 2x \int_{\frac{\pi}{4}}^{\pi/2} + \left \frac{-1}{2} \cos 2x \right _{\pi/2}^{3\pi/4} $ $= \frac{1}{2} + \frac{1}{2} = 1 \text{ sq. units}$	1 0.5 0.5 π/4 π/4 π/4 π/4 π/4
5	Ans:a) Solution: Let $f(x) = \sin^7 x$ $f(-x) = \sin^7(-x) = -\sin^7 x = -f(x)$ So, f is an odd function By property $\int_{-a}^{a} f(x) dx = 0$ if $f(x)$ is odd function	is true
6	Ans:a) Solution $f(x) = \log(\frac{2-3x}{2+3x})$ $f(-x) = \log(\frac{2+3x}{2-3x})$ $= \log(\frac{2-3x}{2+3x})^{-1}$	

	x^{2-3x}
	$=-\log(\frac{2-3x}{2+3x})$
	=-f(x)
	So, f is an odd function
	Ans: a)
7	$f(x) = -\cos x$ and $f'(x) = \sin x$
8	Ans:d)
	$f(x) = \cos x \text{ and } f'(x) = -\sin x$ Ans:a) $f(x) = \frac{1}{x} \text{ and } f'(x) = -\frac{1}{x^2}$
9	Ans:a) $f(x) = \frac{1}{x}$ and $f'(x) = -\frac{1}{x^2}$
10	Ans:d)
	$\int_{10}^{10} \sqrt{x}$
	$I = \int_{0}^{10} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{10 - x}} dx$
	0
	I = $\int_0^{10} \frac{\sqrt{10-x}}{\sqrt{10-x} + \sqrt{x}} dx$ (By property)
	Adding, $2I = \int_0^{10} 1 dx = 10$
	Hence, $I = 5$ sq.units
	Thence, T = 5 sq.umts
11	Ans. a)
	x^{-1-2}
	Solution: $\int \frac{x-3}{(x-1)^3} e^x dx = \int \frac{x-1-2}{(x-1)^3} e^x dx$
	$=\int e^{x}\left[\frac{1}{(x-1)^{2}}-\frac{2}{(x-1)^{3}}\right]dx$
	$-\int c l_{(x-1)^2} (x-1)^{3} dx$
	2 ^X
1	$= \frac{e^x}{1 + c(by using \int e^x(f(x) + f'(x)) dx = e^x f(x) + c$
	$= \frac{e^{x}}{(x-1)^{2}} + c(by \ using \ \int e^{x}(f(x) + f'(x)) \ dx = e^{x}f(x) + c$
12	Ans:a)
12	
	Ans:a) Integration is the inverse process of differentiation
12	Ans:a) Integration is the inverse process of differentiation Answer is d
	Ans:a) Integration is the inverse process of differentiation Answer is d
	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$
	Ans:a) Integration is the inverse process of differentiation Answer is d
	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$
	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x) + f'(x)) dx = e^x f(x) + c$
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct.
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x) + f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1)
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1) By applying the Property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x) + f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1)
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x+1)\log(x+1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1) By applying the Property $\int_0^a f(x) dx = \int_0^a f(a-x) dx$
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1) By applying the Property $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ We get $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} dx$ (2) By adding (1) and (2) we get $2I = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}$
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx \dots (1)$ By applying the Property $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ We get $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} dx \dots (2)$ By adding (1) and (2) we get $2I = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}$ $I = \frac{\pi}{4}$, Hence Assertion is wrong and Reasoning is Correct
13	Ans:a) Integration is the inverse process of differentiation Answer is d Solution: $\int \frac{e^x}{x+1} [1 + (x + 1) \log(x + 1)] dx = \int e^x (\frac{1}{x+1} + \log(x+1)) dx$ $= e^x \log(x+1) + c(by using \int e^x (f(x)+f'(x)) dx = e^x f(x) + c$ Hence Assertion is wrong and Reasoning is correct. Answer is d Solution: Let $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\cot x}} dx$ (1) By applying the Property $\int_0^a f(x) dx = \int_0^a f(a - x) dx$ We get $I = \int_0^{\frac{\pi}{2}} \frac{1}{1+\sqrt{\tan x}} dx$ (2) By adding (1) and (2) we get $2I = \int_0^{\frac{\pi}{2}} dx = \frac{\pi}{2}$

	$=\int_{0}^{\frac{\pi}{2}}\sin^{2}(\frac{\pi}{2}-x)dx$ (by property $\int_{0}^{a}f(x)dx = \int_{0}^{a}f(a-x)dx$)
	$I = \int_0^{\frac{\pi}{2}} \cos^2 x dx$
	Adding,
	$I+I=\int_{0}^{\frac{\pi}{2}} (\sin^{2}x + \cos^{2}x) dx$
	$=\int_{0}^{\frac{\pi}{2}} 1 dx = \frac{\pi}{2}$
	$\therefore I = \frac{\pi}{4}^{2} Sq.$ units
16	Reason (R) : $\int_{-a}^{a} f(x) dx = 0$, if f is an odd function
	Ans:a)
	$f(x) = x^3 + sinx$
	$f(-x) = (-x)^3 + \sin(-x)$
	$=-x^3-sinx$
	=-f(x)
17	Hence f is an odd function Ans:a)
1/	$y = x^x$
	$\log y = x \cdot \log x$
	differentiating w.r.t x,
	$\frac{1}{y}\frac{dy}{dx} = 1 + \log x$
	$\therefore \frac{dy}{dx} = y(1 + \log x)$
18	$= x^{x}(1 + \log x)$ Ans:d)
10	Let $f(x) = \cos^7 x$
	$f(-x) = \cos^7(-x) = (\cos(-x))^7 = \cos^7 = f(x)$
	So, f is not an odd function
	By property $\int_{-a}^{a} f(x) dx = 0$ if f is odd functionis true
	Ans:a)
19	$\frac{d}{dx}(\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}sin^{-1}(x)+c)$
	$=\frac{-x^2}{2\sqrt{1-x^2}} + \frac{1}{2}\sqrt{1-x^2} + \frac{1}{2\sqrt{1-x^2}}$
	$2\sqrt{1-\lambda}$ $2\sqrt{1-\lambda}$
	$=\frac{1-x^2}{2\sqrt{1-x^2}} + \frac{1}{2}\sqrt{1-x^2}$
	$=\frac{\sqrt{1-x^2}}{2}+\frac{1}{2}\sqrt{1-x^2}=\sqrt{1-x^2}$
20	Ans:a)
	$f(x) = \cos x \cdot \log(\frac{2-3x}{2+3x})$
	$f(-x) = \cos(-x) \cdot \log(\frac{2+3x}{2-3x})$
	$= \cos x \cdot \log(\frac{2+3x}{2-3x})^{-1}$
	$= \cos x log(\frac{2+3x}{2-3x})$
	= -f(x). hence f is an odd function

21 Ans:b)

$$\int_{-1}^{1} x|x| dx = \left| \int_{-1}^{0} -x^{2} dx \right| + \int_{0}^{1} x^{2} dx = \frac{2}{3}$$
22 Ans b)

$$\int_{-1}^{0} -x dx + \int_{0}^{1} x dx = \frac{1}{2} + \frac{1}{2} = 1$$
23 Answer is: a)
Solution: $\int e^{5logx} dx = \int e^{logx^{5}} dx = \int x^{5} dx = \frac{x^{6}}{6} + c$
So, option a) is true
24 Answer is: a)
Solution: Let $x^{3} = t, 3x^{2} dx = dt, x^{2} dx = dt$

$$\int x^{2} e^{x^{3}} dx = \frac{1}{3} \int e^{t} dt = e^{t} + c = \frac{1}{3} e^{x^{3}} + c$$
So, option a) is true
24 Answer is: a)
Solution: We know that $\frac{d}{dx}(f(x)) = \log x$, then $f(x) = \int \log x dx$
Using by parts, taking $f(x) = \log x$, $g(x) = 1$

$$= \log x \int dx - \int [\frac{1}{x} \int dx] dx$$

$$= \int e^{x} [\frac{1}{(x-1)^{2}} - \frac{2}{(x-1)^{3}}] dx$$
(It is of the form $\int e^{x}(f(x) + f^{*}(x)) dx$)

$$= \frac{e^{x}}{(x-1)^{2}} + c$$
27 Answer: d
Solution: Anti derivative of $\frac{tanx-1}{tanx+1}$ with respect to x is equals to $\int \frac{tanx-1}{tanx+1} dx$

	$\int \frac{\tan x - 1}{\tan x + 1} dx = -\int \tan(\frac{\pi}{4} - x) dx = -\log\left \sec\left(\frac{\pi}{4} - x\right)\right + c$	
29	Hence Assertion is Wrong and Reasoning is Correct.	
28	Answer is a	
	Solution: By substitution method Let $x e^x = t$	
	By differentiating with respect to x we get $e^{x}(1 + x)dx = dt$	
20	Therefore $\int \sec^2 t dt = tant+c = tan (x e^x) + c$	
29	Answer is d	
	Solution: $\int \frac{dx}{16+9x^2} = \frac{1}{9} \int \frac{dx}{\frac{16}{9}+x^2}$	
	Using the formula $\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a}\right) + c$	
	$=\frac{1}{12}\tan^{-1}\left(\frac{3x}{4}\right)+c$	
	Hence the Assertion is Wrong and Reason is correct	
30	Answer is a	
	Solution : Let $f(x) = \sin^7 x$	
	$f(-x) = \sin^7(-x) = -\sin^7 x = -f(x)$	
	So, f is an odd function	
	By property $\int_{-a}^{a} f(x) dx = 0$ if f is odd function	
31	Answer is a	
	Solution: $f(x) = x + 2 = \begin{cases} x + 2, & \text{if } x \ge -2 \\ -x - 2, & \text{if } x < -2 \end{cases}$	
	So, by property $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$	
	$\int_{-5}^{5} x+2 dx = \int_{-5}^{-2} (x+2) dx + \int_{-2}^{5} (-x-2) dx$	
	On integrating and substituting limits we get 29	
32	Answer is a	
	Solution : $\int_0^a 3x^2 dx = 8$ implies that $[3\frac{x^3}{3}]^a_0 = 8$	
	$a^3 = 8$ implies that $a = 2$	
	Hence the option a is correct.	
32(a)	Answer is a	
	Solution : Let 7-4x = t, $dx = \frac{-1}{4}dt$	
	$\int \sec^2 t dt = a \tan t + c = -\frac{1}{4} \tan(7 - 4x) + c \text{ then } a = -\frac{1}{4}$	
33	Answer is a	

	Solution: $\int \frac{1}{\sqrt{4-9x^2}} dx = \frac{1}{3} \int \frac{1}{\sqrt{\frac{4}{9}-x^2}} dx = \frac{1}{3} \sin^{-1}(\frac{3}{2}x) + c$ Using the formula
	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}(x/a) + c$
	On comparing we get $a = \frac{3}{2}$
34	Answer is b
	Solution: Let $x^2+1 = t, 2xdx = dt$
	Therefore $\int_5^{10} \frac{1}{t} dt = \frac{1}{2} \log 2$, using $\int \frac{1}{x} dx = \log x + c$
	Hence Reasoning is not the correct explanation of Assertion
35	Answer is b
	Solution: $\int_0^{\frac{\pi}{2}} \sqrt{1 + \cos x} dx = \sqrt{2} \int_0^{\frac{\pi}{2}} \cos\left(\frac{x}{2}\right) dx = \sqrt{2} [\sin(x/2)]_0^{\frac{\pi}{2}} = 2$
	So, Statement A is Correct
	Also, R is correct but R does not give correct explanation to A.
36	Answer is b
	Solution: In Assertion Let $\log x = t$ implies that $1/x dx = dt$
	Therefore, $\int t^2 dt = t^3/3 + c = \frac{(logx)^3}{3} + c$
	So, Statement A is Correct
	Also, R is correct but R does not give correct explanation to A

INTEGRALS- CASE STUDY/ SOURCE-BASED INTEGRATED QUESTIONS

1	The given integral $\int f(x)dx$ can be transformed into another form by changing the independent variable x to t by substituting $x = g(t)$		
	Consider $I = \int f(x) dx$		
	Put $x = g(t)$, $\frac{dx}{dt} = g'(t)$ we write $dx = g'(t)dt$		
	Thus $I = \int f(g(t))g'(t)dt$		
	This change of variable is very important tools available to us in the name integration by substitution		
	Based on the above information answer the following questions		
	Evaluate $\int 2x\sin(x^2 + 2)dx$		
	(i)	To evaluate the above question which quantity we assume as another new variable.	
	(ii)	Solve the given question using fundamental integrals.	

2	Let f be a continuous and differentiable function defined in a closed interval [a, b] and F be an anti-derivative of f then
	$\int_{a}^{b} f(x) dx = [F(x)+c]_{a}^{b} = F(b)-F(a) \text{ called definite integral}$
	It is very useful because it gives us a method of calculating the definite integral more easily. There is no need to keep integration constant as it gets cancel by substituting the upper limit and lower limit
	Based on the above information answer the following:
	Evaluate $\int_2^3 \frac{x dx}{1+x^2}$
	(i) Which technique you will use to evaluate the integral
	(ii) What is the value of definite integral

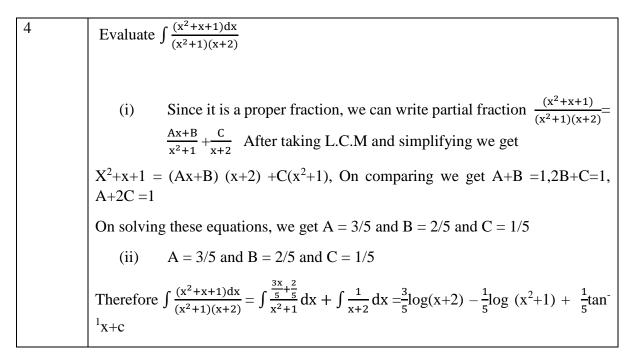
3The rational functions which we shall consider for integration purposes will those
denominators can be factorized in to linear and quadratic factors. Assume that we
want to evaluate $\int \frac{p(x)}{q(x)} dx$ where $\frac{p(x)}{q(x)}$ is a proper rational function. It is always
possible to write the integrand as a sum of simpler rational functions by a method
called partial fraction decomposition. After this the integration can be carried out
easily using the already known methods.If the rational function is of the form $\frac{px+q}{(x-a)(x-b)}$ then we write the partial fraction is
of the form $\frac{A}{x-a} + \frac{B}{x-a}$ Where A and B are to be determined
Based on the above information answer the following:
Evaluate $\int \frac{dx}{(x+1)(x+2)}$
(i) Whate are the values of A and B when we use partial fractions
(ii) After finding the values of A and B how will you evaluate

integral and write the final answer

4The rational functions which we shall consider for integration purposes will those
denominators can be factorized in to linear and quadratic factors. Assume that we
want to evaluate $\int \frac{p(x)}{q(x)} dx$ where $\frac{p(x)}{q(x)}$ is a proper rational function. It is always
possible to write the integrand as a sum of simpler rational functions by a method
called partial fraction decomposition. After this the integration can be carried out
easily using the already known methods.If the rational function is of the form $\frac{px+q}{(x^2+a)(x+b)}$ then we write the partial fraction is
of the form $\frac{Ax+B}{x^2+a} + \frac{C}{x-b}$ Where A, B and C are to be determined
Based on the above information answer the following

	Evaluate $\int \frac{(x^2+x+1)dx}{(x^2+1)(x+2)}$
	(i) Whate are the values of A, B and C when we use partial fractions
	(ii) After finding the values of A, B and C how will you evaluate the integral and write the final answer
5	We have I = $\int e^x (f(x) + f'(x)) dx = \int e^x (f(x)) dx + \int e^x (f'(x)) dx$
	$= I_1 + \int e^x (f'(x)) dx \text{ where } I_1 + \int e^x (f(x)) dx \dots \dots (1)$
	Taking $f(x)$ as first function and e^x as second function in I_1 and using integrating it by parts, we have $I_1 = f(x)e^x - \int e^x (f'(x))dx + c$
	Substituting I ₁ in (1) we get I = f(x)e ^x - $\int e^{x} (f'(x)) dx + \int e^{x} (f'(x)) dx = f(x)e^{x} + C$
	Thus $\int e^x (f(x) + f'(x)) dx = f(x)e^x + C$
	Based on the above information answer the following
	(i) Express the integral $\int e^x \sec(1 + \tan x) dx$ in the form $\int e^x (f(x) + f'(x)) dx$
	(ii) What is $f(x)$ and $f'(x)$

(iii) What is the final answer


ANSWERS

INTEGRALS- CASE STUDY/ SOURCE-BASED INTEGRATED QUESTIONS

1	Evaluate $\int 2x \sin(x^2 + 2) dx$
	(i) Let $x^2+2 = t$,
	(ii) differentiate with respect to t
	We get $2xdx = dt$, Evaluate <i>sintdt</i>
	$=-\cos t + c = -\cos(x^2 + 2) + c$

2	Evaluate $\int_2^3 \frac{x dx}{1+x^2}$
	(i) Using substitution method Let $x^2+2 = t$,
	(ii) differentiate with respect to t
	We get $2xdx = dt$, $\frac{1}{2}\int_2^3 \frac{dt}{t} = \log t + c$
	$= [\log(1+x^2)]_2^3 = \log 10 - \log 5 = \log 2$
	(iii) log2

 $\begin{array}{c|cccc} 3 & & & & & & \\ \hline 3 & & & & \\ & & & & \\ & & & & \\$

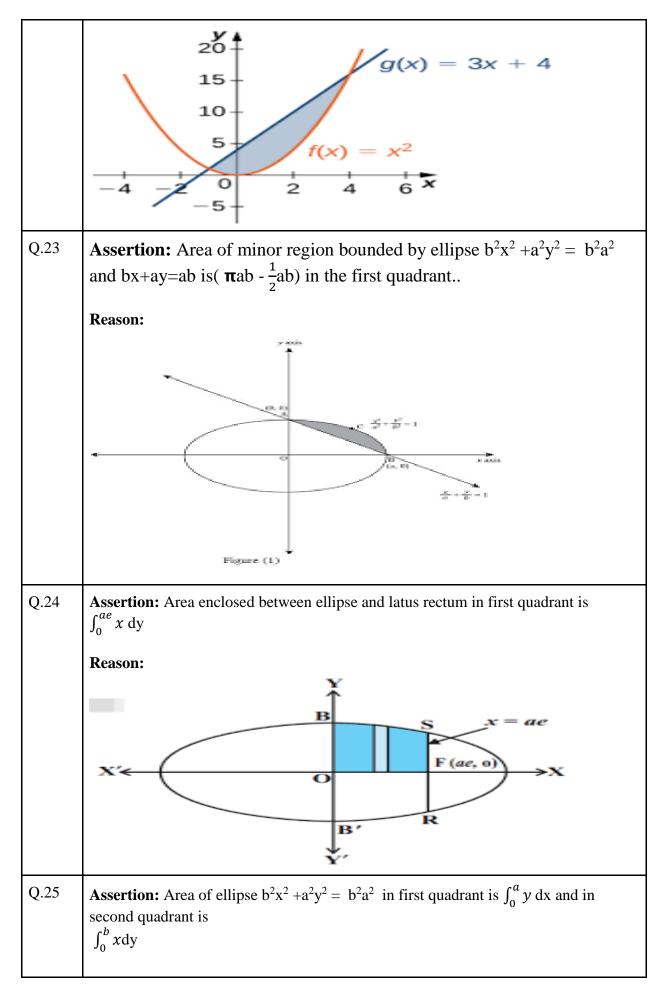
5	Evaluate	Evaluate $\int e^x \sec(1 + \tan x) dx$	
	(i)	$\int e^{x}(\sec x + \tan x \sec x) dx$	
	(ii)	F(x) = secx and f'(x) = secxtanx	
	(iii)	e ^x secx+c	

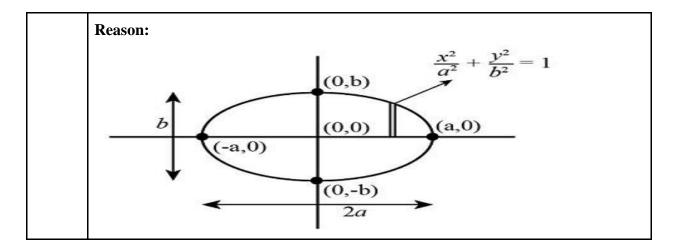
CHAPTER: APPLICATION OF INTEGRALS

ASSERTION AND REASONING QUESTIONS

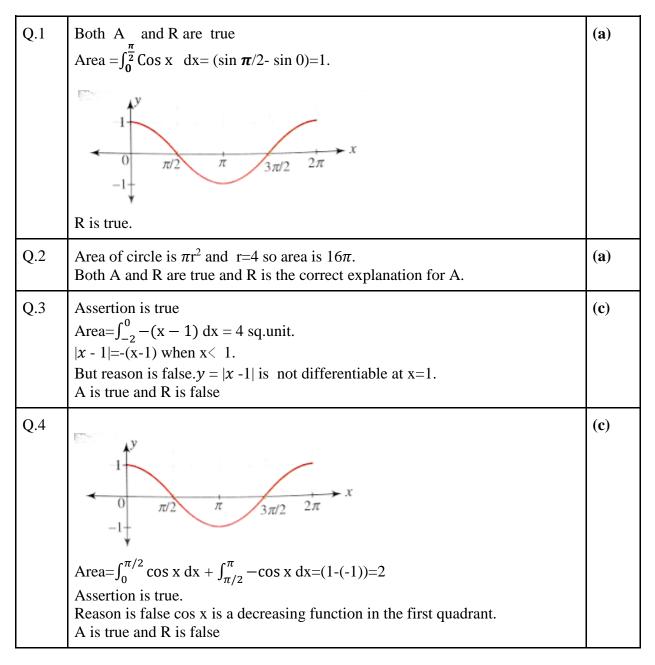
The following questions consist of two statements – Assertion (A) and Reason(R), Answer the questions selecting the appropriate option given below.

(a) Both A and R are true and R is the correct explanation for A.

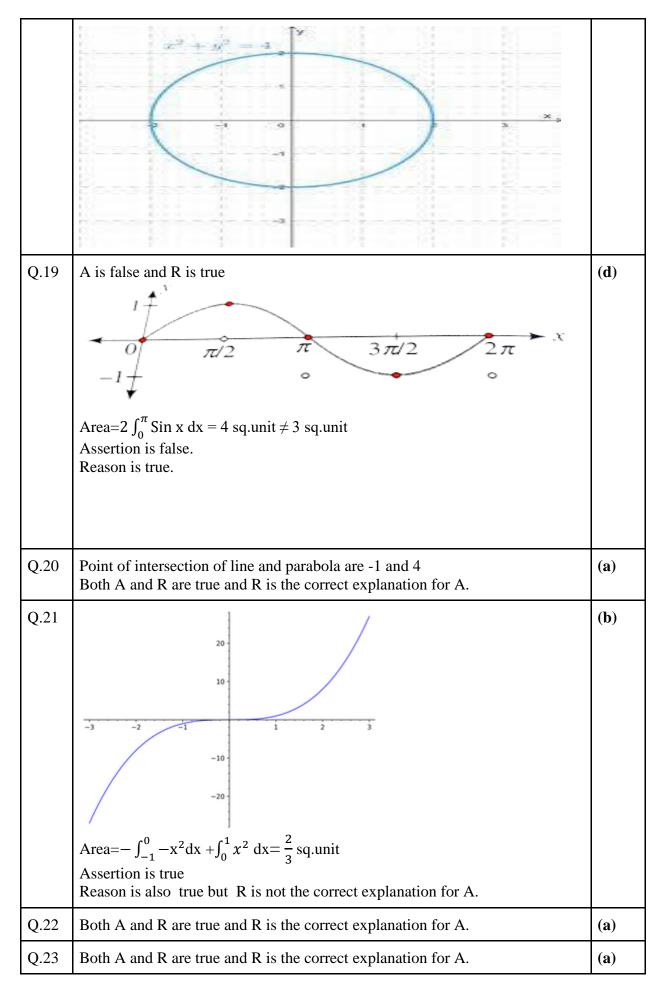

- (b) Both A and R are true and R is not the correct explanation for A.
- (c) A is true and R is false


(d) A is false and R is true

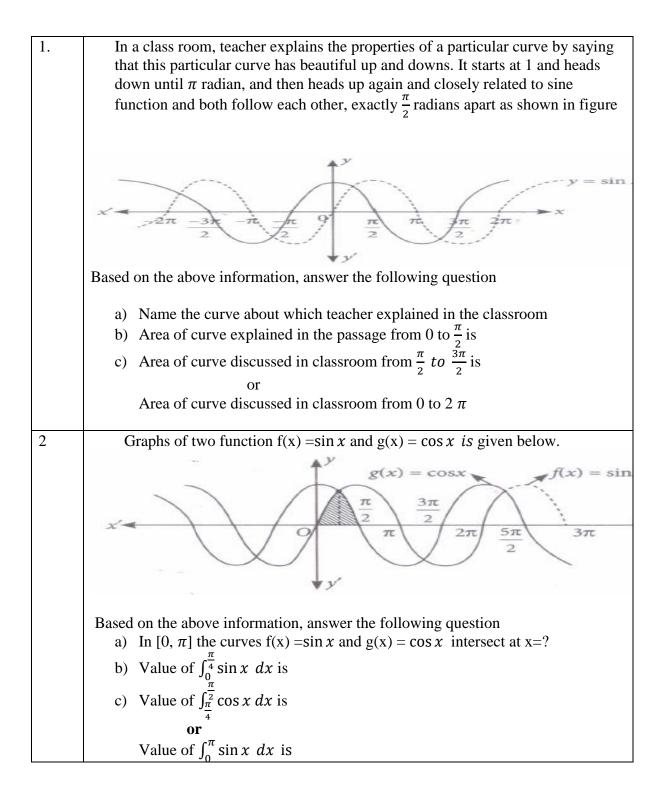
Q.1	Assertion: The area bounded by the curve y=Cos x in I quadrant with coordinate axes is 1 sq. unit.
	Reason: $\int_0^{\frac{\pi}{2}} \cos x dx = 1$
Q.2	Assertion: Area enclosed by the circle $x^2 + y^2 = 16$ is equal to 16π sq.unit. Reason: Area enclosed by circle $x^2 + y^2 = r^2$ is πr^2 .
Q.3	Assertion: Area bounded by $y = x - 1 $ from $x = -2$ to $x = 0$ is 4 sq.unit. Reason: $y = x - 1 $ is differentiable in R.
Q.4	Assertion: The area of the region bounded by $y = \cos x$ and the ordinates $x = 0$ and $x = \pi$ is 2sq. unit Reason: $\cos x$ is an increasing function in the first quadrant.
Q.5	Assertion: Area of the region bounded by the parabola $x^2=4y$, $y=1$, $y=4$ and $x=0$ is $\int_1^4 x dy$. Reason: Area under a curve $x=f(y)$ and right of y-axis lying between the ordinates $y=a$ and $y=b$ is given by $\int_a^b f(y) dy$.
Q.6	Assertion: Area of the region given by $\{(x,y): y^2 \le 6x, 2\le x \le 5, x, y\ge 0\}$ = $\int_2^5 \sqrt{6x}$ dy. sq.units. Reason: Area under a curve x=f(y) lying to the right of y-axis and between the lines y=a and y=b is given by $\int_a^b f(y) dy$.
Q.7	Assertion: The area of the region bounded by $y = \sin x$ and the ordinates $x = 0$ and $x = \pi$ is 2sq. unit Reason: sin x is an increasing function from $x = 0$ to $x = \pi$.
Q.8	Assertion: Area of the region bounded by the parabola $x^2=y$ and $y=2x$ is $\int_0^2 2x dx - \int_0^2 x^2 dx$ Reason:

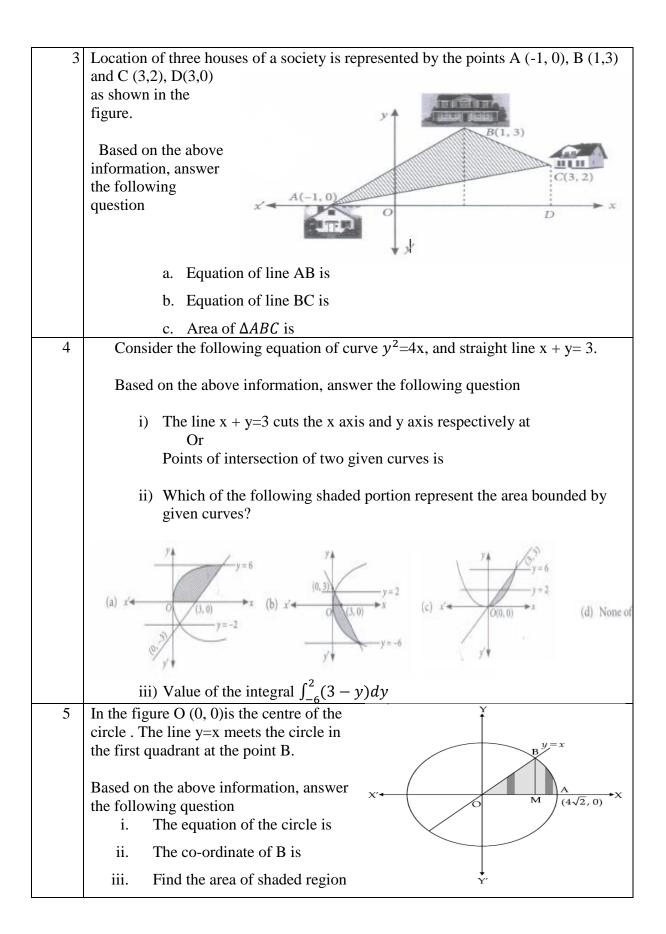

	$y = x^{2}$
Q.9	Assertion: Area of the region bounded by the parabola $y^2=4x$, $x=1$, $x=4$ and $y=0$ is $\frac{56}{3}$ sq.units. Reason: Area under a curve $y=f(x)$ and above x-axis lying between the ordinates $x=a$ and $x=b$ is given by $\int_a^b f(x) dx$
Q.10	Assertion: The area bounded by the curve y=sin x in I quadrant with coordinate axes is 1 sq. unit. Reason: $\int_0^{\frac{\pi}{2}} \sin x dx = 1$
Q.11	Assertion: The area bounded by $y^2 = 4x$ and $y = x$ is $\frac{8}{3}$ sq.units. Reason: The area bounded by $y^2 = 4ax$ and $y = mx$ is ($8a^2/3m^3$) sq. units.
Q.12	Assertion: The area enclosed by the circle $x^2 + y^2 = a^2$ is πa^2 . Reason: The area enclosed by the circle with centre origin and radius a is $4\int_a^b x dy$.
Q.13	Assertion: The area of the region bounded by the curve $y=x^2$ and the line $y=4$ is $\frac{3}{32}$. Reason: Area of the bounded by $x=f(y)$ and the line $y=4$ is $2\int_0^4 x dy$.
Q.14	Assertion: The area of the region bounded by $y = x+1$, x-axis and the lines $x = 2$ and $x=3$ is 5/2 sq.units Reason: The intercept made by the line $y = x+1$ on the coordinate axes are 1 unit left and 1 unit above of origin respectively.
Q.15	Assertion: The area bounded by the curve $x = y^2$, y-axis and the lines $y = 3$ and $y = 4$ is $37/3$ Reason: Area bounded by the curve $y=f(x)$, -axis and the lines $y = 3$ and $y = 4$ $= \int_3^4 f(y) dy.$

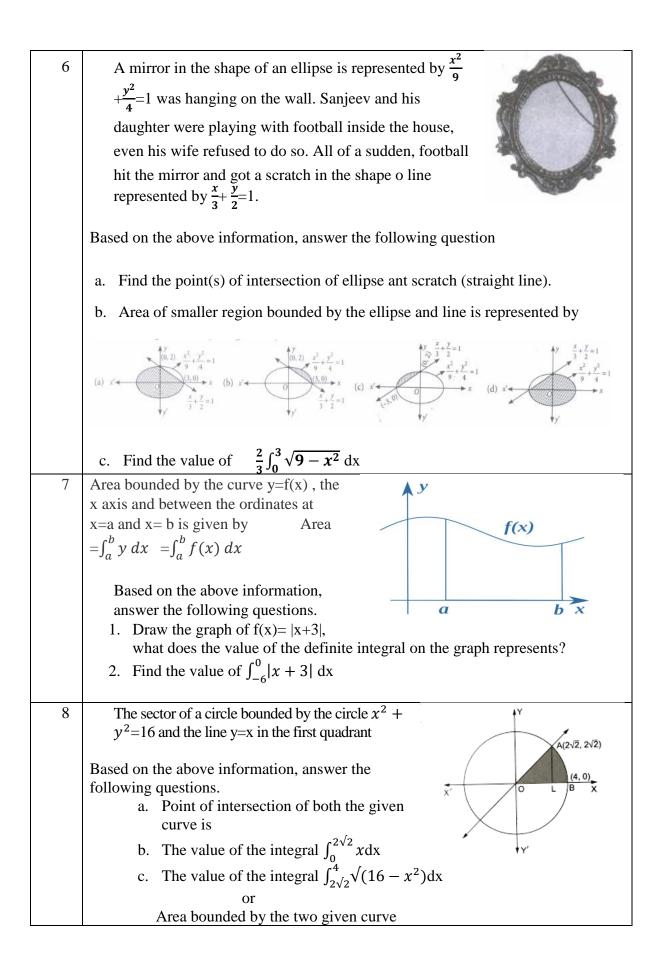
Q.16	Assertion: Area bounded by $y = x + 2 $ from $x = -2$ to $x = 0$ is 2 sq.unit. Reason: $y = x + 2 $ is differentiable in R.
Q.17	Assertion: The region bounded by the $y = \sqrt{2^2 - x^2}$ is a semicircle above the x-axis. Reason: Area of the semicircle $y = \sqrt{2^2 - x^2}$ is half of the area bounded by the equation $x^2 + y^2 = 4$.
Q.18	Assertion: Area bounded by the circle $x^2 + y^2 = a^2$ in the first quadrant is given by $\int_0^a \sqrt{a^2 - x^2} dx$. Reason: The area bounded by the circle $x^2 + y^2 = a^2$ in the first quadrant is $\int_0^a \sqrt{a^2 - y^2} dy$
Q.19	Assertion: The area bounded by the curve y=-Sin x from x=0 to x=2 π is 3 sq.unit. Reason: The area bounded by the curve y=-Sin x and x axis $1 + \frac{1}{\sqrt{2\pi}} + \frac{1}{$
Q.20	Assertion: 20 + 15 + 15 + 10 + 10 + 10 + 10 + 10 + 1
	$f(x) = x^{2}$ $-4 \qquad 0 \qquad 2 \qquad 4 \qquad 6 \qquad x$ Area is $\int_{-1}^{4} [g(x) - f(x)] dx$ Reason: If $f(x) > g(x)$, for all $x \in (a,b)$ then area bounded by these two curves is $\int_{a}^{b} [f(x) - g(x)] dx$
Q.21	$f(x) = x^{-1}$ $f(x) = x^{-1}$ $Area is \int_{-1}^{4} [g(x) - f(x)] dx$ Reason: If $f(x) > g(x)$, for all $x \in (a,b)$ then area bounded by these two curves is
Q.21 Q.22	$f(x) = x^{2}$ $f(x) = x^{2}$ $f(x) = x^{2}$ $f(x) = x^{2}$ $f(x) = y^{2}$ $f(x) = g(x), \text{ for all } x \in (a,b) \text{ then area bounded by these two curves is}$ $\int_{a}^{b} [f(x) - g(x)] dx$ $f(x) = y^{2}$ $f(x) = y^{2}$ $f(x) = y^{2}$

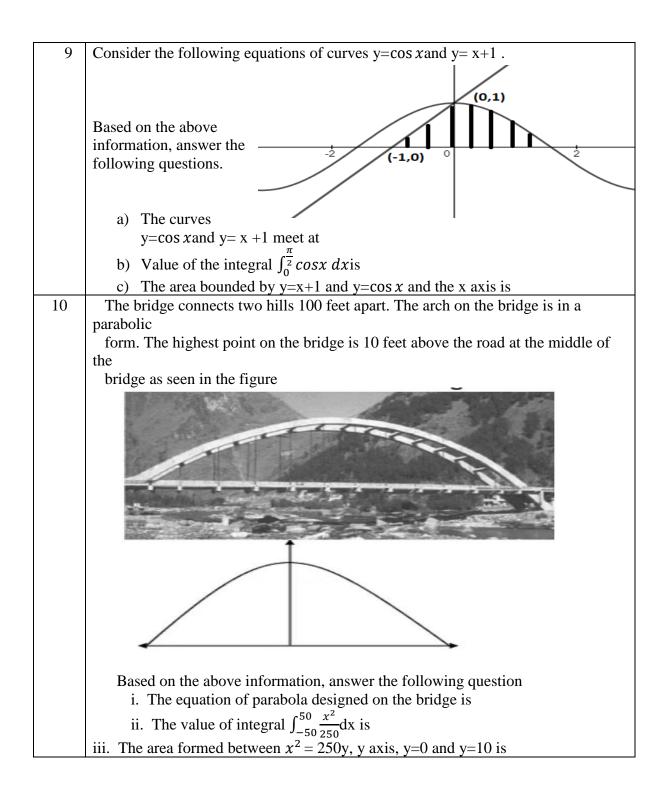


SOLUTIONS OF ASSERTION AND REASON QUESTIONS

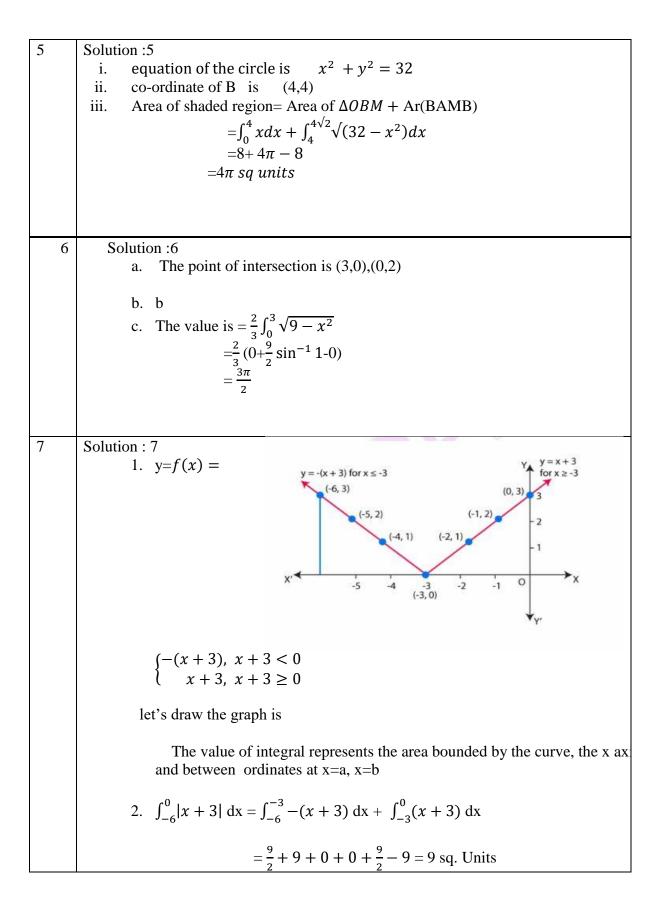

Q.5	A is false and R is true Assertion is false Area= $2\int_{1}^{4}\sqrt{4y}$ dy because parabola x ² =4y is symmetrical about y-axis. Reason is true.	(d)
Q.6	Upper of x-axis. Both A and R are true and R is the correct explanation for A.	(a)
Q.7	Area= $\int_0^{\pi} \sin x dx=2$ sq.unit. Assertion is true. But reason is false because $\sin x$ is not increasing from 0 to $\pi/2$ and decreasing from $\pi/2$ to π . A is true and R is false	(c)
Q.8	Both A and R are true and R is not the correct explanation for A.	(a)
Q.9	Assertion is true Area= $2\int_{1}^{4} \sqrt{4x} dx = \frac{56}{3}$ Reason is true and R is the correct explanation for A. Both A and R are true and R is the correct explanation for A.	(a)
Q.10	A is false and R is true Assertion is false because sin x is periodic function but reason is true. $ \frac{1}{\sqrt{1-1}} \sqrt{\frac{\pi}{\pi^2}} \sqrt{\frac{\pi}{2\pi}} \sqrt{\frac{3\pi^2}{2\pi}} \sqrt{\frac{2\pi}{\pi}} \sqrt{\frac{\pi}{2\pi}} $ Area = $\int_0^{\frac{\pi}{2}} \sin x dx = -(\cos \pi/2 - \cos 0) = 1$.	(d)
Q.11	Assertion and reason both are correct Area bounded by $y^2=4ax$ and $y=mx$ is ($8a^2/3m^3$) sq. units. (General formula)	(a)


	Reason is a particular case when a=1 and m=1. Both A and R are true and R is the correct explanation for A.	
Q.12	Both A and R are true and R is the correct explanation for A. Circle is symmetrical about the x-axis as well as the y-axis.	(a)
Q.13	A is false and R is true Assertion is false Area= $2\int_0^4 \sqrt{y} dy = 16/3 \neq \frac{3}{32}$ Reason is true. The curve $y=x^2$ is symmetrical about the y-axis.	(d)
Q.14	A is false and R is true Assertion is false Area= $\int_2^3 (x + 1) dx = 7/2 \neq 5/2$ Reason is true.	(d)
Q.15	Both A and R are true and R is the correct explanation for A. Area= $\int_{3}^{4} y^{2} dy=37/3$	(a)
Q.16	Assertion is true Area= $\int_{-2}^{0} (x + 2) dx = 2$ sq.unit. x + 2 = (x+2) when $x > -2But reason is false.y = x + 2 is not differentiable at x = -2.A is true and R is false$	(c)
Q.17	Both A and R are true and R is not the correct explanation for A. Circle is symmetrical about the x-axis and y-axis.	(b)
Q.18	Both A and R are true and R is not the correct explanation for A. Circle is symmetrical about the x-axis and y-axis.	(b)




Q.24	A is false and R is true Assertion is false because Area = $\int_0^{ae} y dx$. Reason is true	(d)
Q.25	Both A and R are true and R is the correct explanation for A.	(a)

CASE STUDY BASED QUESTIONS



SOLUTIONS

1	Solution:1 a) Cosine
	b) Required Area $=\int_{0}^{\frac{\pi}{2}} \cos x dx = [\sin \frac{\pi}{2} - \sin 0] = 1$ sq unit
	c) Required Area $= \left \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x dx \right = \left \sin \frac{3\pi}{2} - \sin \frac{\pi}{2} \right = 2$ sq. Unit
	or
	Required Area = $\int_{0}^{2\pi} \cos x dx = \int_{0}^{\frac{\pi}{2}} \cos x dx + \left \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x dx \right +$
	$\int_{\frac{3\pi}{2}}^{2\pi} \cos x dx$
	= 1 + 2 + 1 = 4 sq.unit
2	Solution:2
	a) For point of intersection, we have $\sin x = \cos x$, $\frac{\sin x}{\cos x} = 1$, $\rightarrow \tan x = 1 \Rightarrow x =$
	$\frac{\pi}{4}$
	b) $\int_{0}^{\frac{\pi}{4}} \sin x dx = (-)[\cos \frac{\pi}{4} - \cos 0] = 1 - \frac{1}{\sqrt{2}}$
	c) $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x dx = \left[\sin\frac{\pi}{2} - \sin\frac{\pi}{4}\right] = 1 - \frac{1}{\sqrt{2}}$
	or
2	$\int_0^{\pi} \sin x dx = (-)[\cos \pi - \cos 0] = 2$ Solution:3
3	a. Equation of line AB is $y = \frac{3}{2}(x+1)$
	b. Equation of line BC is $y = \frac{-1}{2}x + \frac{7}{2}$
	c. Area of $\triangle ABC$ = area of region ABCD-Area of $\triangle ACD$
	$=\int_{-1}^{1}\frac{3}{2}(x+1)dx+\int_{1}^{3}(\frac{-x}{2}+\frac{7}{2})dx-\int_{-1}^{3}\frac{(x+1)}{2}dx$
	=3+5-4 = 4 sq units
4	Solution:4
	i. The line $x + y=3$ cuts the x axis and y axis at (3,0)and (0,3)respectively [since
	at x-axis, y=0 and y-axis ,x=0] Or
	Equation of curve $y^2 = 4x$, and $x + y = 3$
	$y^2 = 4(3 - y)$ Required point of intersection are (1, 2), (9,-6)
	ii. b.
	iii. $\int_{-6}^{2} (3-y) dy = 40$

0	
8	Solution:8
	a. We have $x^2 + y^2 = 16$
	Point of intersection of $(2\sqrt{2}, 2\sqrt{2})$
	b. $\int_0^{2\sqrt{2}} x dx = 4$ sq units
	c. $\int_{2\sqrt{2}}^{4} \sqrt{(16-x^2)} dx = 2(\pi - 2)$
	Or
	Required area = area (OLA)+area(BAL)= 2π sq units
9	Solution :9
	d. The curves $y = \cos x$ and $y = x+1$ meet at (0,1)
	e. Value of the integral $\int_0^{\frac{\pi}{2}} \cos x dx = (\sin \frac{\pi}{2} - \sin 0) = 1$
	f. Area of the shaded region = $\int_{-1}^{0} x + 1 dx + \int_{0}^{\frac{\pi}{2}} \cos x dx$
	$=\frac{3}{2}$ sq units
10	Solution:10
	i. Parabola equation $x^2 = -4ay$
	It is given that height 10 feet is at the middle of the bridge. So a point on
	parabola is (50,-10).
	By putting point in above parabola equation.
	$50^2 = -4 a (-10)$
	$a = \frac{125}{2}$
	hence required equation , $x^2 = -250y$
	ii. $\int_{-50}^{50} \frac{x^2}{250} dx = \frac{1000}{3}$ sq units
	iii. $\int_0^{10} 2\sqrt{(250y)} dy = \frac{2000}{3}$ sq unit

CHAPTER: DIFFERENTIAL EQUATIONS

ASSERTION REASONING BASED QUESTIONS

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true

$(\mathbf{u}) \mathbf{A} \mathbf{I} \mathbf{S}$	
1	Assertion (A): Order of a differential equation represents the number of independent
	arbitrary constants in the general solution.
	Reason (R): Degree of a differential equation represents the number of family of
	curves.
	Answer: B
	Theoretical explanation is required
2	Assertion (A): The order of the differential equation whose general solution is $y = \frac{2}{3}$
	$c_1 cosx + c_2 sin^2 x + c_3 e^{2x+c_4}$ is 3.
	Reason (R): The total number of arbitrary parameters in the given general solution in
	the assertion is 4.
3	Assertion (A): Assertion (A): The differential equation of the family of curve
	represented by $y = Ae^x$ is given by $\frac{dy}{dx} = y$.
	Reason (R): $\frac{dy}{dx} = y$ is valid for every member of the given family.
4	Assertion (A): The degree of the differential equation $\frac{d^3y}{dx^3} + 3(\frac{dy}{dx}) = x^2 \log(\frac{d^2y}{dx^2})$ is not
	defined.
	Reason (R): If the differential equation is a polynomial in terms of its derivatives, then
	its degree is defined.
5	Assertion (A): Order of differential equation $\left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2} = 5x$ is 1
	Reason (R): Order of the differential equation is the order of the highest order derivative
	present in the equation
	1
6	Assertion (A): The differential equation $(\frac{dy}{dx})^3 + 2y^{\frac{1}{2}} = x$ is of order 1 and degree 3
	D (D) (T) $d^{3}y$ dy (d) $d^{3}y$ (d) dy
	Reason (R): The order and degree of differential equation $\frac{d^3y}{dx^3} = \sqrt{\frac{dy}{dx}} + 5$ are 3 and 1
	respectively
7	
,	Assertion (A): Degree of differential equation: $x - \cos(\frac{dy}{dx}) = 0$ is 1.
	Reason (R): Differential equation $x-\cos(\frac{dy}{dx})=0$ can be converted in the polynomial
	un
	equation of derivative.
8	Assertion (A): The solution of differential equation $\frac{dy}{dx} = \frac{y}{x}$ with x=1 and y=1 is x = y
	Reason (R): Separation of variable method can be used to solve the differential equation.
9	Assertion (A): The differential equation $\frac{dy}{dx} = \frac{x + \sqrt{y^2 - x^2}}{x}$ is homogeneous equation.
	ax x c r

	Reason (R): $f(\lambda x, \lambda y) = \lambda^n f(x, y)$ for homogeneous equation.
10	Assertion (A): $\sin x \frac{d^2y}{dx^2} + \cos x \frac{dy}{dx} + \tan x = 0$ is not a linear differential equation
	Reason (R): A differential equation is said to be linear if dependent variable and its
	differential coefficients occur in first degree and are not multiplied together.
11	Assertion (A): $\frac{dy}{dx} = \frac{x^2 - xy + y^2}{x^2 - xy}$ is a homogeneous differential equation.
	Reason (R): The function $F(x, y) = \frac{x^2 - xy + y^2}{x^2 - xy}$ is homogeneous
12	Assertion (A): $\frac{dy}{dx} + x^2y = 2x$ is a first order linear differential equation
	Reason (R): If P and Q are functions of x only or constant then differential equation of
	the form $\frac{dy}{dx} + Py = Q$ is a first order linear differential equation
13	Assertion (A): If p and q are the degree and order of differential equation
	$\left(\frac{d^3y}{dx^3}\right)^2 + \frac{d^2y}{dx^2} = 4$ respectively, then p = 2, and q = 3.
	Reason (R): and $2p - 3q = -5$
14	Assertion (A): General solution of the differential equation $\log(\frac{dy}{dx})=2x+y$ is $-e^{-y}=$
	$\frac{1}{2}e^{2x} + C.$
	Reason (R): Degree of differential equation $log(\frac{dy}{dx}) = 2x + y$ is 1.
15	Assertion (A): The differential equation $\frac{dy}{dx} = 1 + \frac{y}{x}$ is homogenous differential equation.
	Reason (R): For a homogenous equation $\frac{dy}{dx} = f(\frac{y}{x})$.
16	Assertion (A): To solve the differential equation $\frac{dy}{dx} = \sin(x + y)$, we first substitute
	$\mathbf{x} + \mathbf{y} = \mathbf{t}$
	Reason (R): if $x + y = t$, then $\frac{dy}{dx} = \frac{dt}{dx} - 1$.
17	Assertion (A): $g(x, y) = xy^{\frac{1}{2}} + yx^{\frac{1}{2}}$ is a homogeneous function of degree $\frac{3}{2}$.
	Reason (R): A function is called homogeneous function of degree n if $h(\lambda x, \lambda y) = \lambda^n$
	$h(x, y)$, where $\lambda \neq 0$.
18	Assertion (A): The solution of the differential equation $\frac{dy}{dx} + y = 1$, with y=0 at x = 0
	is $y = 1 - e^{-x}$
	Reason (R): The given differential equation is a linear differential equation.
19	Assertion (A): The solution of the equation $3y \frac{dy}{dx} + 4x = 0$ represents family of ellipses.
	Reason (R): Equation of ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
20	Consider the differential equation $(xy-1)\frac{dy}{dx}+y^2=0$
	Assertion (A): The solution of the equation is $xy = logy + C$

	Reason (R): The given differential equation can be expressed as $\frac{dx}{dy} + Px = Q$, whose
	integrating factor is log y.
21	A curve C has the property that its initial ordinate of any tangent drawn is less than
	the abscissa of the point of tangency by unity.
	Assertion (A): Differential equation satisfying the curve is linear
	Reason (R): Degree of differential equation may be one
22	Assertion (A): The differential equation $y^3 dy + (x + y^2) dx = 0$ becomes
	homogeneous if we put $y^2 = t$.
	Reason (R): All differential equation of first order and first degree becomes
	homogeneous if we put $y = tx$.
23	Assertion (A): The solution of $ydx - xdy + y^2 dx = 0$ is $\frac{x}{y} + x = c$
	Reason (R): d $\left(\frac{x}{y}\right) = \frac{(ydx - x. dy)}{y^2}$
24	Assertion (A): The equation of the curve passing through (3, 9) which satisfies
	differential equation $\frac{dy}{dx} = x + \frac{1}{x^2}$ is $6xy = 3x^3 + 29x - 6$.
	Reason (R): The solution of differential equation $\frac{d^2y}{dx^2} - y = 0$ is $y = c_1e^x + c_2e^{-x}$
25	Assertion (A): The Integrating factor of the given differential equation $\frac{dy}{dx} - \frac{2y}{x} = 2x^2 \text{ is } \frac{1}{x^2}$
	Reason (R): The integrating factor of linear differential equation $\frac{dy}{dx} + Py = Q$ is $e^{\frac{dP}{dx}}$
	where P and Q are functions of x or constants
	ANSWERS & EXPLANATION
1.	Answer: B Theoretical explanation is required
2.	Answer : C
	$y = c_1 cos x + c_2 sin^2 x + c_3 e^{2x} e^{c_4}$
	Where c_3 and e^{c_4} are considered as one constant, then equation becomes $y = c_1 cos x + c_2 sin^2 x + ke^{2x}$
	Clearly, it has 3 arbitrary constants
3.	Answer : (a)
	$y = Ae^{x}$, where A is arbitrary constant
	So, $\frac{dy}{dx} = Ae^x = y$
4.	For different values of A, the curve belongs to the same family Answer: (a)
4.	Answer: (a)
	1

	The given DE can't be expressed in a polynomial in terms of its derivatives and its should not be associated with the logarithmic function.
5.	Answer: (d)
	Here, the highest order derivative present in the given DE is 2 and so its order is 2
6.	Answer: (c)
	The given DE should free from radical sign and expressed in a polynomial in terms of its derivatives.
	The differential equation $\frac{d^3y}{dx^3} = \sqrt{\frac{dy}{dx} + 5}$
	Squaring on both the sides, then
	$\left(\frac{d^3y}{dx^3}\right)^2 = \left(\sqrt{\frac{dy}{dx} + 5}\right)^2$ $\left(\frac{d^3y}{dx^3}\right)^2 = \left(\frac{dy}{dx} + 5\right)^2$
	Order=3 and Degree=2
7.	Answer: (a)
	The given DE is d^{dy}
	$x - \cos\left(\frac{dy}{dx}\right) = 0 \tag{dy}$
	$-\cos\left(\frac{dy}{dx}\right) = -x$
	$\cos\left(\frac{dy}{dx}\right) = x$
	$\left(\frac{dy}{dx}\right) = \cos^{-1}x$
	If the differential equation is a polynomial in terms of its derivatives, then its degree is defined and it is one.
8.	Answer: (a)
	$\frac{dy}{dx} = \frac{y}{x}$
	By applying, Separation of variable method
	$\frac{\mathrm{d}y}{\mathrm{v}} = \frac{\mathrm{d}x}{\mathrm{x}}$
	Applying integral on both the sides, then $\log y = \log x + \log c$ y=cx, then with x=1 and y=1, the solution is x = y.
9.	Answer: (a)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x + \sqrt{y^2 - x^2}}{x}$
	$f(x,y) = \frac{x + \sqrt{y^2 - x^2}}{x}$
	then $f(kx, ky) = \frac{kx + \sqrt{(ky)^2 - (kx)^2}}{kx} = k^0 \left(\frac{x + \sqrt{y^2 - x^2}}{x}\right) = f(x, y)$

	If the function is homogeneous then the given DE is a homogeneous differential equation.
10.	Answer: (a)
	Theoretical explanation is required
11.	Answer: (a)
	$dy x^2 - xy + y^2$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{x}^2 - \mathrm{x}\mathrm{y} + \mathrm{y}^2}{\mathrm{x}^2 - \mathrm{x}\mathrm{y}}$
	$f(x, y) = \frac{x^2 - xy + y^2}{x^2 - xy}$
	$\int (x, y) = \frac{1}{x^2 - xy}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{x}^2 - \mathrm{x}\mathrm{y} + \mathrm{y}^2}{\mathrm{x}^2 - \mathrm{x}\mathrm{y}}$
	$f(x, y) = \frac{x^2 - xy + y^2}{x^2 - xy}$
	then $f(kx, ky) = \frac{(kx)^2 - (kx)(ky) + (ky)^2}{(kx)^2 - (kx)(ky)} = k^0 \left(\frac{x^2 - xy + y^2}{x^2 - xy}\right) = f(x, y)$
	If the function is homogeneous then the given DE is a homogeneous differential
	equation.
12.	Answer: (a), The given DE can be expressed in the form of $\frac{dy}{dx} + Py = Q$ where $P=x^2$
	and Q=2x
13.	Answer: (b)
	Here, the highest order derivative is 3 and its power is 2
	Therefore, $Order=q=3$ and $degree=p=2$.
14.	Answer: (b)
	The given DE is $\log(\frac{dy}{dx}) = 2x + y$ expressed in the form of $\frac{dy}{dx} = e^{2x+y} = e^{2x} e^{y}$
	Clearly, it is polynomial in differential coefficients. So Degree is one
	By applying variable and separable method $e^{-y}dy = e^{2x}dx$
	Apply integral on both the sides $\int e^{-y} dy = \int e^{2x} dx$
	Required solution is $-e^{-y} = \frac{1}{2}e^{2x} + C.$
15.	Answer: (a)
	Theoretical Explanation is required.
16.	Answer: (a)
	The given DE can be solved by substituting $x + y= t$ (reducible to variable and separable method) only.
17.	Answer: (d)
	Let $g(x, y) = xy^{\frac{1}{2}} + yx^{\frac{1}{2}}$
	For homogeneous function, we have to write $g(kx, ky) = (kx)(ky)^{\frac{1}{2}} + (ky)(kx)^{\frac{1}{2}}$

	$=kk^{\frac{1}{2}}\left(xy^{\frac{1}{2}}\right)+kk^{\frac{1}{2}}\left(yx^{\frac{1}{2}}\right)$
	$=k^{\frac{3}{2}}(xy^{\frac{1}{2}}+yx^{\frac{1}{2}})$
	$=k^{\frac{3}{2}}g(x,y)$
18.	Answer: (a)
	The solution of the differential equation $\frac{dy}{dx} + y = 1$
	It is in the form of $\frac{dy}{dx}$ + Py = Q
	Then, I.F= $e^{\int 1 dx} = e^x$
	Solution is $ye^x = \int 1 \cdot e^x dx + C$
	$\mathbf{y} \boldsymbol{e}^x = \boldsymbol{e}^x + \boldsymbol{C}$
	when y=0 at x = 0 then C=-1 and the solution is $y = 1-e^{-x}$
19.	Answer: (a)
	The given differential equation $3y \frac{dy}{dx} + 4x = 0$ can be expressed as $3y dy = -4x dx$
	Apply integral on both the sides, we have
	$\frac{3y^2}{2} = \frac{-4x^2}{2} + c$
	$\frac{2}{4x^2 + 3y^2} = C$ represents family of Ellipses
20.	Answer: (c)
20.	
	$\frac{dy}{dx} = \frac{-y^2}{xy - 1}$
	$\frac{dx}{dy} = \frac{1 - xy}{y^2}$
	$\frac{dx}{dy} = \frac{1}{y^2} - \frac{xy}{y^2}$
	$\frac{dx}{dy} + \frac{1}{y}x = \frac{1}{y^2}$
	Hence, $P = \frac{1}{y}$ and $Q = \frac{1}{y^2}$
	Then, I.F. $=e^{\int \frac{1}{y} dy} = e^{\log y} = y$
	The solution is $xy = \int \frac{1}{y^2} X y dy + c$
	xy=logy+c
21.	Answer: (b)
	We know that, equation of tangent $Y - y_1 = m(X - x_1)$ at the point (x_1, y_1)
	By using the condition initial ordinate i.e., X=0 then it becomes $Y - y_1 = m(-x_1)$
	$Y = y_1 - mx_1$

	According to the question, $y_1 - mx_1 = x_1 - 1$
	$mx_1 - y_1 = 1 - x_1$
	Replace the variables and m= $\frac{dy}{dx}$
	$x\frac{dy}{dx} - y = 1 - x$
	$\frac{dy}{dx} + \left(\frac{-1}{x}\right)y = \frac{1-x}{x}$
22.	Answer: (c)
	The given DE can be written as $\frac{dy}{dx} = \frac{-(x+y^2)}{y^3}$
	Substitute $y^2 = t$ and $2y \frac{dy}{dx} = \frac{dt}{dx}$
	Hence, the given DE can be written as $\frac{dt}{dx} = \frac{-2(x+t)}{t}$
23.	Answer: (a) $y dx - xdy + y^2 dx = 0$
	$=\frac{ydx - xdy}{y^2} = -1dx \Rightarrow d(\frac{x}{y}) = -1dx \Rightarrow \frac{x}{y} + x = c$
24.	Answer: (b)
	Given DE is $\frac{dy}{dx} = x + \frac{1}{x^2}$
	Integrating on both the sides $y = \frac{x^2}{2} - \frac{1}{x} + c$ by substituting $x = 3$ and $y = 9$ then $c = \frac{29}{6}$
	The required solution is $y = \frac{x^2}{2} - \frac{1}{x} + \frac{29}{6}$ after simplification $6xy = 3x^3 + 29x - 6$. $y = c_1e^x + c_2e^{-x}$
	$y = c_1 e^x + c_2 e^{-x}$ $\frac{dy}{dx} = c_1 e^x - c_2 e^{-x}$
	$\frac{\frac{d^2 y}{dx^2}}{\frac{d^2 y}{dx^2}} = c_1 e^x + c_2 e^{-x}$
25.	Answer: (C)
	The given differential equation $\frac{dy}{dx} - \frac{2y}{x} = 2x^2$ and compared with $\frac{dy}{dx} + Py = Q$ then we have $P = \frac{-2}{x}$ and $Q = 2x^2$
	Then, I.F.= $e^{\int \frac{x}{x} dx} = e^{-2logx} = e^{logx^{-2}} = x^{-2} = \frac{1}{x^2}$

CASE BASED QUESTIONS

Case S	Study Question 1:
A poli	ce cruiser, approaching a right-angled intersection from north, is chasing a
speedi	ng car that has turned the corner and is now moving straight east. When the
cruise	t is 0.6 km. north of the intersection and the car is 0.8 km to the east, the police
determ	nine with radar that the distance then and the car is increasing at 20 km/h.
Suppo	se that the cruiser is moving at 60 km/h at the instant of measurement.
Q.1	If s is the distance between car and cruiser at time t, $x = position of car at time$
	t and y position of cruiser at time t then find the velocity of the cruiser.
Q.2	Find the moment i.e., $\frac{d^2s}{dt^2}$ if $\frac{d^2x}{dt^2} = -40$ and $\frac{d^2y}{dt^2} = 50$ (in km/h ²)
Case S	Study Question 2:
A sphe	erical drop of liquid evaporates at a rate proportional to its surface area, if the
radius	initially is 5mm and 5 minute later the radius is reduced to 2mm.
On th	e basis of above information, answer the following questions-
Q.1	Write the differential equation for the above situation.
Q.2	Find the rate with which the surface area changes after 5 minutes.
Q.3	Find the rate of evaporation after, 5 minutes
Case S	Study Question 3:
Differe	ential equation $\frac{dy}{dx} = f(x) g(y)$ can be solved by separating variable $\frac{dy}{g(y)} = f(x) dx$.
On th	e basis of above information, answer the following questions:
Q.1	Find the equation of the curve to the point $(1, 0)$ which satisfies the differential
	equation $(1 + y^2) dx - xy dy = 0.$
Q.2	Find the solution of the differential equation $\frac{dy}{dx} + \frac{1+y^2}{\sqrt{1-x^2}} = 0$
Q.3	If $\frac{dy}{dx} = 1 + x + y + xy$ and $y(-1) = 0$, then find the equation of the curve.
Case S	Study Question 4:
A & B	are two separate reservoirs of water. Capacity of reservoir A is double the
	ty of reservoir B. Both the reservoirs are filled completely with water, their
	A poli speedi cruiser determ Suppo Q.1 Q.2 Case S A sphe radius On th Q.1 Q.2 Q.3 Case S Differe Q.1 Q.2 Q.3 Case S

	inlets are closed and the water if released simultaneously from both the reservoirs.
	The rate of flow of water out of each reservoir at any instant of time is proportional to
	the quantity of water in the reservoir at that time. One hour after the water is release,
	the quantity of water in reservoir A is 1.5 times the quantity of water in reservoir B.
	Let V_A and V_B represents volume of reservoir A and B at any time t, then:
	On the basis of above information, answer the following questions:
	Q.1 If after $1/2$ an hour $V_A = kV_B$, then find the value of k.
	Q.2 After how many hours do both the reservoirs have the same quantity of water?
5	Case Study Question 5:
	For certain curves $y = f(x)$ satisfying $\frac{d^2y}{dx^2} = 6x - 4$ and $f(x)$ has local minimum
	value 5 when x=1. On the basis of above information, answer the following
	questions:
	Q.1 Find the number of critical points for $y = f(x)$ for $x \in [0,2]$
	Q.2 Find the Global minimum value of $y = f(x)$ for $x \in [0,2]$
	Q.3 Find the Global maximum value of $y = f(x)$ for $x \in [0,2]$
	ANSWERS
1.	Solutions:
	1. [C] At the instant in question $x = 0.8$, $y = 0.6$,
	$\frac{\mathrm{dy}}{\mathrm{dt}} = -60 \text{ km/h}$
	dt dt
	$\frac{ds}{dt} = 20 \text{ km/h}, \text{ s}^2 = \text{x}^2 + \text{y}^2$
	$2s \frac{ds}{dt} = 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$
	$\frac{ds}{dt} = \frac{1}{\sqrt{x^2 + y^2}} \left(x \frac{dx}{dt} + y \frac{dy}{dt} \right) \qquad \dots (i)$
	× × ×
	2. Sol.[B] Differentiating eqn. (i) $\frac{d^2s}{dt^2} = \frac{1}{\sqrt{x^2 + y^2}}$

$$\begin{bmatrix} \left[\left(1 - \frac{x}{x^2 + y^2} \right) \left(\frac{dx}{dt}\right)^2 + \left(1 - \frac{y}{x^2 + y^2} \right) \left(\frac{dy}{dt}\right)^2 \\ + x \frac{d^2x}{dt^2} + y \frac{d^2y}{dt^2} - \frac{2xy}{x^2 + h^2} \frac{dx}{dt} \frac{dy}{dt} \end{bmatrix} \\ \text{Putting the given value } \frac{d^2s}{dt^2} = 6450. \\ 2. \quad \text{Solutions:} \\ 1. \quad \frac{dv}{dt} = = -k(4\pi r^2).....(1) \text{ where } 0 < k \in \mathbb{R} \\ 2. 4.8 \ \pi \text{ sq. mm/min} \\ 3. 9.6 \ \pi \\ 3. \quad \text{Solutions:} \\ 1. \quad x^2 - y^2 = 1 \\ 2. \quad \tan^{-1} y + \sin^{-1} x = c \\ 3. \quad e^{\frac{(1-x)^2}{2}} - 1. \\ 4. \quad \text{Solutions:} \\ 1. \quad \sqrt{3} \\ 2. \quad \log_{4/3} 2 \text{ hrs.} \\ 5. \quad \text{Solutions:} \\ 1. 2 \\ 2. \ 5 \\ 3. \ 7 \end{bmatrix}$$

CHEPTER: VECTOR ALGEBRA

ASSERTION & REASONING QUESTIONS

Instructions

In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices

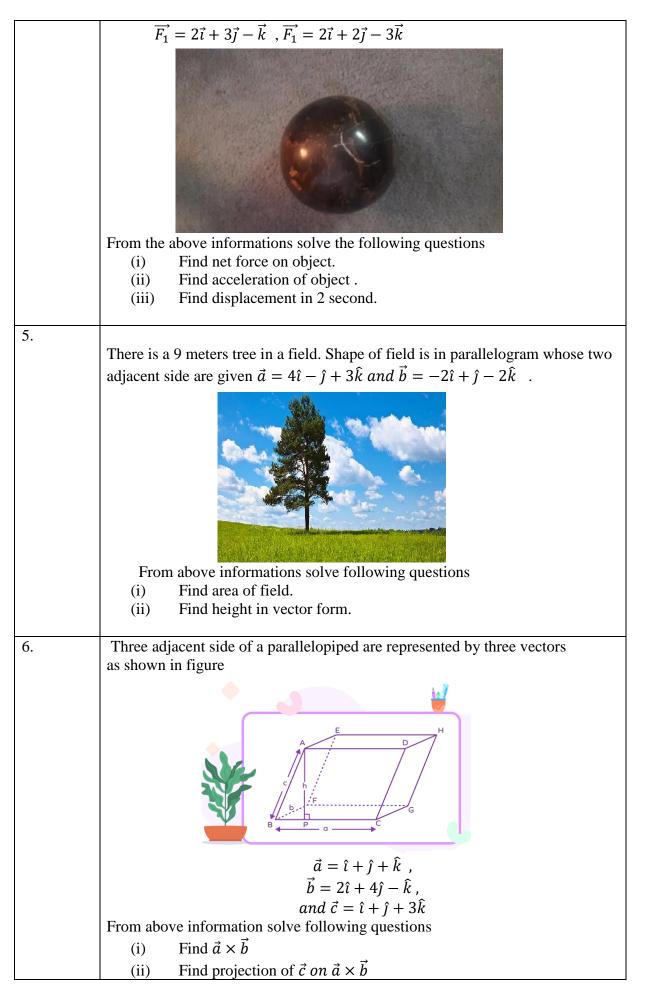
- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A
- c) A is true but R is false
- d) A is false but R is true

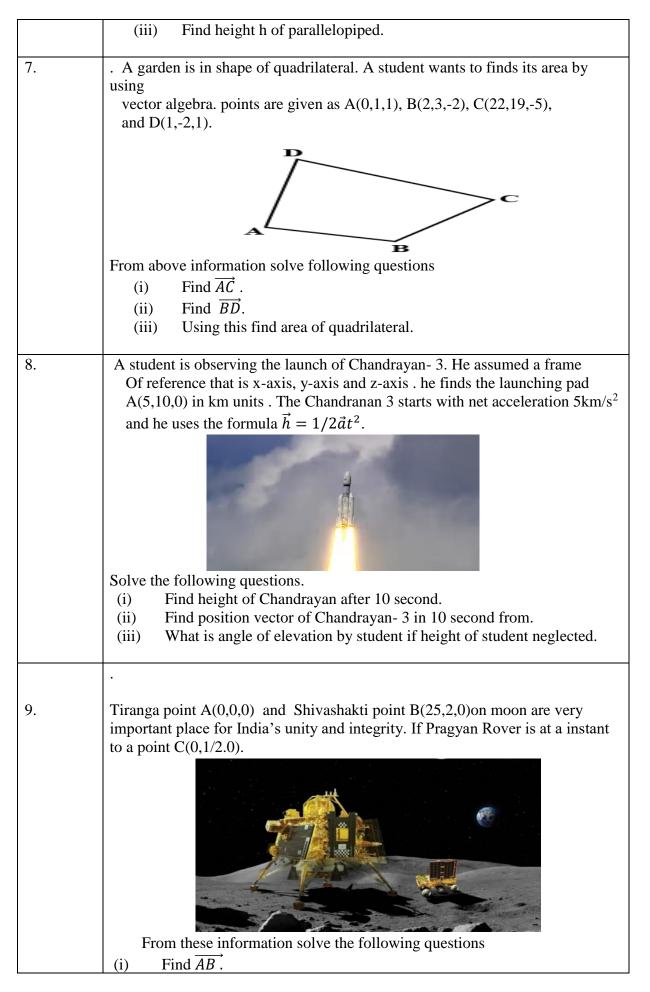
-	1) A is false but R is true
1	A : The vectors in the figure are coinitial vectors .
	R: Two or more vectors having the same initial point are called coinitial
	vectors.
2	A: The vectors $3\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ are $3\hat{\imath} - 2\hat{\jmath} - 4\hat{k}$ are collinear vectors.
	R: Two or more vectors are said to be collinear if they are parallel to
	the same line, irrespective of their magnitudes and directions.
3	A: The vectors $3\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ and $3\hat{\imath} + 2\hat{\jmath} - 4\hat{k}$ are equal vectors.
	R: Two vectors \vec{a} and \vec{b} are said to be equal, if they have the same
	magnitude and direction regardless of the positions of their initial points.
4	A:The vector $\hat{i} + \hat{j} - \hat{k}$ is a unit vector.
5	R: A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector. A:The vector $-2\hat{i} - 2\hat{j} - 2\hat{k}$ is a scalar multiple of the vector $\hat{i} + \hat{j} + \hat{k}$
5	R: A vector whose magnitude is unity (i.e., 1 unit) is called a unit vector.
6	A:For the vector $\hat{i} - 2\hat{j} - 2\hat{k}$, a set of direction ratios are $1, -2, -2$
	R: If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, then a_1 , a_2 , a_3 are also called direction ratios of \vec{a}
7	A: The vector $\frac{\hat{\iota}-2\hat{j}-2\hat{k}}{3}$ is a unit vector in the direction of the vector
	$\hat{i}-2\hat{j}-2\hat{k}$
	R: The unit vector in the direction of \vec{a} is given by $\frac{\vec{a}}{ \vec{a} }$
8	A: The direction cosines of the vector $\hat{i} - 2\hat{j} - 2\hat{k}$ are $1, -2, -2$
	R: The magnitude r, direction ratios (a, b, c) and direction cosines (l, m, n) of any
	vector are related as: $l = \frac{a}{r}$, $m = \frac{b}{r}$, $n = \frac{c}{r}$
9	A: The direction cosines of the vector $\hat{i} - 2\hat{j} - 2\hat{k}$ are $\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}$
	R: : The magnitude r, direction ratios (a, b, c) and direction cosines (l, m, n) of any
	vector are related as: $l = \frac{a}{r}$, $m = \frac{b}{r}$, $n = \frac{c}{r}$

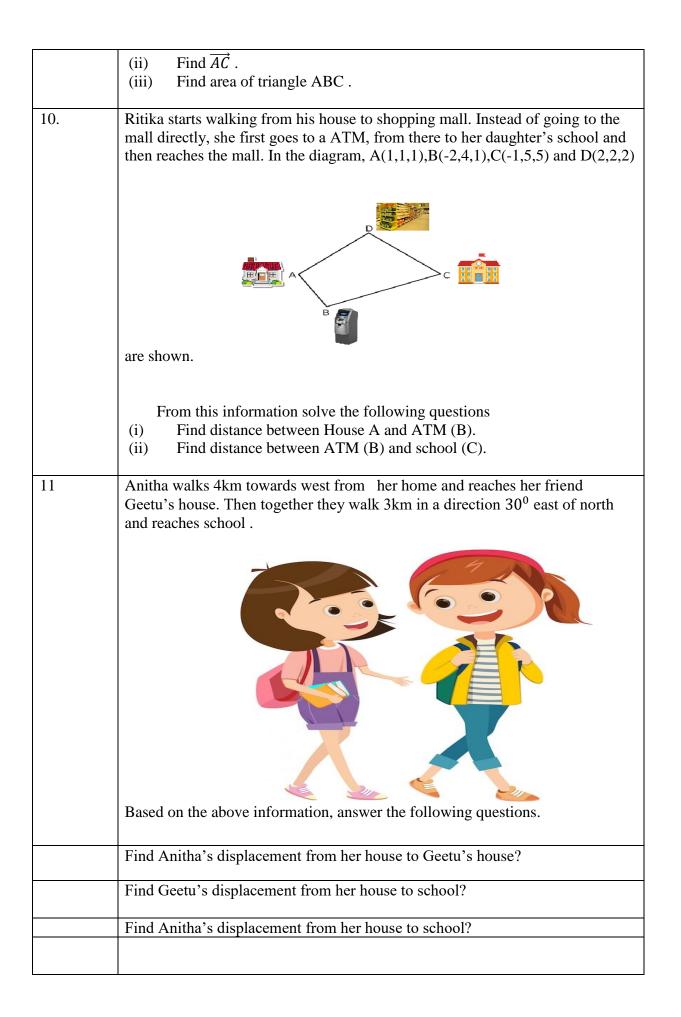
10	A: The vector joining the points P(2, 3, 0) and Q(-1, -2, -4) is
	$\overrightarrow{PQ} = -3\hat{i} - 5\hat{j}$ $-4\hat{k}$
	R: If P (x_1, y_1, z_1) and Q(P (x_2, y_2, z_2)) are any two points, then magnitude of the vector \overrightarrow{PO} is given by
	vector PQ is given by $ \vec{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
11	A: The mid point of the vector joining the points $P(2, 3, 4)$ and $Q(4, 1, -2)$ is $R(3, 2, 1)$.
	R: The position vector of the point R which divides P and Q internally in the $\vec{R} = \vec{R} \cdot \vec{R}$
	ratio of m : n is given by $\overrightarrow{OR} = \frac{m\overrightarrow{b} + n\overrightarrow{a}}{m+n}$
12	A: $\vec{a} = \hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ are perpendicular to each other
	R: Two vectors \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \times \vec{b} = \vec{0}$
13	A: $\vec{a} = \hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$ are perpendicular to each other
	R: Two vectors \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \cdot \vec{b} = 0$
14	A:If $\vec{a} = \hat{\imath} + 3\hat{\jmath} + 4\hat{k}$ and $\vec{b} = 2\hat{\imath} + 2\hat{\jmath} + \hat{k}$, then projection of \vec{a} on \vec{b} is 4.
	R: Projection of the vector \vec{a} on \vec{b} is given by $\vec{a} \cdot \hat{b}$.
15	A: If $\vec{a} = \hat{\imath} + 3\hat{\jmath}$ and $\vec{b} = 3\hat{\imath} + \hat{k}$, then $ \vec{a} = \vec{b} $.
	R: Two vectors are equal if their magnitudes are equal.
16	A: The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is $\frac{2\pi}{3}$.
	R: Two vectors \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \cdot \vec{b} = 0$
17	A: The angle between the vectors $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ is $\frac{2\pi}{3}$.
	(\rightarrow)
	R: The angle between two vectors \vec{a} and \vec{b} is given by $\cos^{-1}\left(\frac{\vec{a}\cdot\vec{b}}{ \vec{a} \vec{b} }\right)$
18	A: The area of the parallelogram whose adjacent sides are $\hat{i} + \hat{k}$ and $2\hat{i} + \hat{j} + \hat{k}$ is
	$\sqrt{3}$.
	R: Area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $\frac{1}{2} \vec{a} \times \vec{b} $
19	A: The vector in the direction of the vector $\hat{i} - 2\hat{j} + 2\hat{k}$ that has magnitude 9 units
	is $3(\hat{\imath}-2\hat{\jmath}+2\hat{k})$.
20	R: The vector in the direction of the vector \vec{a} that has magnitude k units is $k\vec{a}$.
20	A: Let the vectors \vec{a} and \vec{b} be such that $ \vec{a} = 3$, $ \vec{b} = \frac{\sqrt{2}}{3}$ and angle between them
	is $\frac{\pi}{4}$, then $\vec{a} \times \vec{b}$ is a unit vector.
	R: If \vec{a} and \vec{b} are two vectors then $ \vec{a} \times \vec{b} = \vec{a} \vec{b} \sin\theta$, where θ is the angle
	between \vec{a} and \vec{b} .
21	A: The vectors $\hat{i} - 2\hat{j} + 2\hat{k}$ and $3\hat{i} - 6\hat{j} + 6\hat{k}$ are parallel vectors.
	R: Two vectors \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \cdot \vec{b} = 0$
22	A: If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} - 2\hat{j} - 2\hat{k}$, then $ \vec{a} = \vec{b} $
	R: If $ \vec{a} = \vec{b} $, then it necessarily implies that $\vec{a} = \pm \vec{b}$.
23	A: The value of $\hat{\iota}.(\hat{\jmath} \times \hat{k}) + \hat{\jmath}.(\hat{\imath} \times \hat{k}) + \hat{k}.(\hat{\imath} \times \hat{\jmath})$ is 1.
	R: Dot product and cross product are commutative .
24	R: Dot product and cross product are commutative . A: : If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = -\hat{i} - 2\hat{j} - 2\hat{k}$ then $\vec{a} \cdot \vec{b} = -9$
	R: If $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ and $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ then
	$\vec{a}.\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$

25	A: $(\hat{\imath} - 2\hat{\jmath} + 2\hat{k}) \times (\lambda \hat{\imath} - 2\lambda \hat{\jmath} + 2\lambda \hat{k}) = \vec{0}$
	R: Two vectors \vec{a} and \vec{b} are parallel to each other if $\vec{a} \times \vec{b} = \vec{0}$

ANSWERS


1	Ans: Solution : As the given vectors are starting from same point they are coinitial vectors
2	
2	Ans: Solution: The given vectors $3\hat{i} + 2\hat{j} - 4\hat{k}$ are $3\hat{i} - 2\hat{j} - 4\hat{k}$ are not collinear.
3	Ans: a)
	Solution: The vectors $3\hat{i} + 2\hat{j} - 4\hat{k}$ and $3\hat{i} + 2\hat{j} - 4\hat{k}$ are equal vectors if they have the same magnitude and direction
4	Ans: d)
	Solution: Magnitude of $\hat{i} + \hat{j} - \hat{k}$ is $\sqrt{3}$
5	Ans: b)
	Solution: $-2\hat{\imath} - 2\hat{\jmath} - 2\hat{k} = -2(\hat{\imath} + \hat{\jmath} + \hat{k})$ R is also true, but R is not correct explanation of A.
6	Ans: a) Solution : Both A and R are true statements.
7	Ans: a) Solution: : Both A and R are true statements
8	Ans: d)
-	Solution: The direction ratios of the vector $\hat{i} - 2\hat{j} - 2\hat{k}$ are 1, -2, -2
9	Ans: a)
	Solution: Both A and R are true statements.
10	Ans:b)
	Solution: Both A and R are true statements.
11	Ans: a)
10	Solution: Both A and R are true statements.
12	Ans: c
10	Solution: $\vec{a} \cdot \vec{b} = 0$, therefore \vec{a} and \vec{b} are perpendicular to each other
13	Ans: d)
1.4	Solution : $\vec{a} \cdot \vec{b} = 10$, \vec{a} and \vec{b} are perpendicular to each other if $\vec{a} \cdot \vec{b} = 0$
14	Ans: Solution: Projection of $\vec{a} = \hat{i} + 3\hat{j} + 4\hat{k}$ on $\vec{b} = 2\hat{i} + 2\hat{j} + \hat{k}$ is 4
15	Ans: c)
-	Solution: Two vectors \vec{a} and \vec{b} are said to be equal, if they have the same magnitude and direction regardless of the positions of their initial points
16	Ans : b)
- 0	Solution: Both A and R are true statements, but R is not the correct explanation of A.
17	Ans: a) Solution: Both A and R are true statements
18	Ans: c)


	Solution: Area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $ \vec{a} \times \vec{b} $
19	Ans: c)
	Solution: The vector in the direction of the vector \vec{a} that has magnitude k units is $k\hat{a}$
20	Ans: a)
	Solution: Since $ \vec{a} \times \vec{b} = 1$, $\vec{a} \times \vec{b}$ is a unit vector
21	Ans: b)
	Solution: Both A and R are true statements , but R is not the correct explanation of A
22	Ans: c)
	Solution: $ \vec{a} = \vec{b} $ need not imply $\vec{a} = \pm \vec{b}$, e g : $\vec{a} = \hat{\imath} + 2\hat{\jmath} + 2\hat{k}$ and
	$\vec{b} = 2\hat{\imath} + \hat{\jmath} + 2\hat{k}$
23	Ans: c)
	Solution: $\hat{\iota}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{\iota} \times \hat{k}) + \hat{k}.(\hat{\iota} \times \hat{j}) = \hat{\iota}.\hat{\iota} + \hat{j}.(-\hat{j}) + \hat{k}.\hat{k} = 1$
24	Ans: a)
	Solution: $\vec{a} \cdot \vec{b} = -9$
25	Ans: a)
	Solution: $(\hat{\imath} - 2\hat{\jmath} + 2\hat{k}) \times (\lambda \hat{\imath} - 2\lambda \hat{\jmath} + 2\lambda \hat{k}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -2 & 2 \\ \lambda & -2\lambda & 2\lambda \end{vmatrix} = \vec{0}$


CASE STUDY QUESTIONS

Q.NO.	
1	A monkey starts moving from a point A(0,0,0) to 5 meters away a point B in east direction then 6 meters in north direction to a point C and then climbs a tree of 10 meters to a point D. From above information answer the questions given below: (i) Find position vector of monkey. (ii) Find displace of monkey. (iii) Find unit vector of vector \overrightarrow{AD} ,
2	Two toddlers are playing seesaw game in a garden. A student of XII class observing the positions of toddlers and finds the position of first

	toddler (3,4,2) and position of second toddler (5,6,0).
	From above information answer the questions given below:
	 (i) Find position vector of midpoint of seesaw. (ii) Find distance between both toddlers (iii) Find position vector of point on seesaw which divides seesaw beam in 2:1.
3.	Three birds are sitting on tree at positions A(4,6,8), B (6, 7,7), C(5,6,9).A student of class XII wants apply vector algebra concept to find different component of triangle.
	Solve the problem that he finds in following questions. (i) Find vector \overrightarrow{AB} and \overrightarrow{AC} . (ii) Find centroid of triangle. (iii) Find angle between vector \overrightarrow{AB} and \overrightarrow{AC} .
4.	. A student of class XII wants to find displace of a particle using the formula $\vec{s} = \vec{u}t + \frac{1}{2}\vec{a}t^2$
	and $\vec{a} = \frac{\vec{F}}{m}$ where $\vec{u} = 2\hat{i} m/s$ and mass of particle is 2 kg. Force on the particle are as (newton unit)

	ANSWERS
1.	SOLUTION:Let X axis in east direction Y axis in north direction and Z axis in above direction(i) $\overrightarrow{AD} = 5\hat{\iota} + 6\hat{f} + 10\hat{k}$ (ii) $ \overrightarrow{AD} = \sqrt{25 + 36 + 100} = \sqrt{161}$ meter .(iii) $\widehat{AD} = \frac{5\hat{\iota} + 6\hat{f} + 10\hat{k}}{\sqrt{161}}$.
2.	Solutions: (i) $4\hat{i} + 5\hat{j} + \hat{k}$. (ii) $\sqrt{(2)^2 + (2)^2 + (-2)^2} = \sqrt{12} = 2\sqrt{3}$ units (iii) $\vec{r} = \frac{13\hat{i} + 16\hat{j} + 2\hat{k}}{3}$.
3.	SOLUTION : (i) $\overrightarrow{AB} = 2\hat{\imath} + \hat{\jmath} - \hat{k}$, $\overrightarrow{AC} = \hat{\imath} + \hat{k}$. (ii) $(5,19/3,8)$. (iii) $\cos^{-1}\frac{1}{\sqrt{12}}$.
4.	SOLUTION: (i) $\vec{F} = \vec{F_1} + \vec{F_2} = 4\hat{\imath} + 5\hat{\jmath} - 4\hat{k}$ (ii) $\vec{a} = \frac{\vec{F}}{m} = 2\hat{\imath} + 5/2\hat{\jmath} - 2\hat{k}$ (iii) $\vec{s} = 8\hat{\imath} + 5\hat{\jmath} - 4\hat{k}$.
5.	SOLUTION: (i) Area= $ \vec{a} \times \vec{b} = -\hat{\imath} + 2\hat{\jmath} + 2\hat{k} = 3$ (ii) $9\frac{(-\hat{\imath}+2\hat{\jmath}+2\hat{k})}{3}$
6.	SOLUTION: (i) $\vec{a} \times \vec{b} = -5\hat{\imath} + 3\hat{\jmath} + 2\hat{k}$ (ii) Projection = $(\hat{\imath} + \hat{\jmath} + 3\hat{k})$. $\frac{-5\hat{\imath} + 3\hat{\jmath} + 2\hat{k}}{\sqrt{38}} = \frac{4}{\sqrt{38}}$. (iii) Height= $\frac{4}{\sqrt{38}}$
7.	SOLUTION: (i) $\overrightarrow{AC} = 22\hat{\imath} + 18\hat{\jmath} - 6\hat{k}$ (ii) $\overrightarrow{BD} = -\hat{\imath} - 5\hat{\jmath} + 3\hat{k}$ (iii) $AREA = \frac{1}{2} \overrightarrow{AC} \times \overrightarrow{BD} = \frac{1}{2}\sqrt{12940}$
8.	SOLUTION: (i) $\vec{h} = \frac{1}{2}5 \times 10^2 \hat{k}$ or h= 250 km. (ii) $\vec{r} = (5\hat{i} + 10\hat{j}) + 250\hat{k}$

	(iii) $\theta = \tan^{-1} 10\sqrt{5}$
9.	Solution: (i) $\overrightarrow{AB} = 25\hat{\imath} + 2\hat{\jmath}$ (ii) $\overrightarrow{AC} = 1/2\hat{\jmath}$. (iii) $Area = 25/2\hat{k}$.
10.	Solution: (i) $32\sqrt{2}$. (ii) $32\sqrt{2}$.
11	It is given that Let O be the position of Anitha's house and B be the position of i Geetu's house nd final positions of the girl, respectively. Then, the girl's position can be shown as Solution: It is given that Let O and B be the initial and final positions of the girl, respectively. Then, the Anitha's position can be shown as $\underbrace{It is given that}_{is given that} = \underbrace{It is given that}_{is given that}_{is given that} = \underbrace{It is given that}_{is give$
(i)	$\overrightarrow{OA} = -4\hat{\iota}$
(ii)	$\overrightarrow{AB} = AB \cos 60^{\circ} \hat{\imath} + AB \sin 60^{\circ} \hat{\jmath}$ $= \frac{3}{2} \hat{\imath} + \frac{3\sqrt{3}}{2} \hat{\jmath}$
(iii)	$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$ $= \frac{-5}{2}\hat{\iota} + \frac{3\sqrt{3}}{2}\hat{j}$

CHAPTER: THREE DIMENSIONAL GEOMENTRY

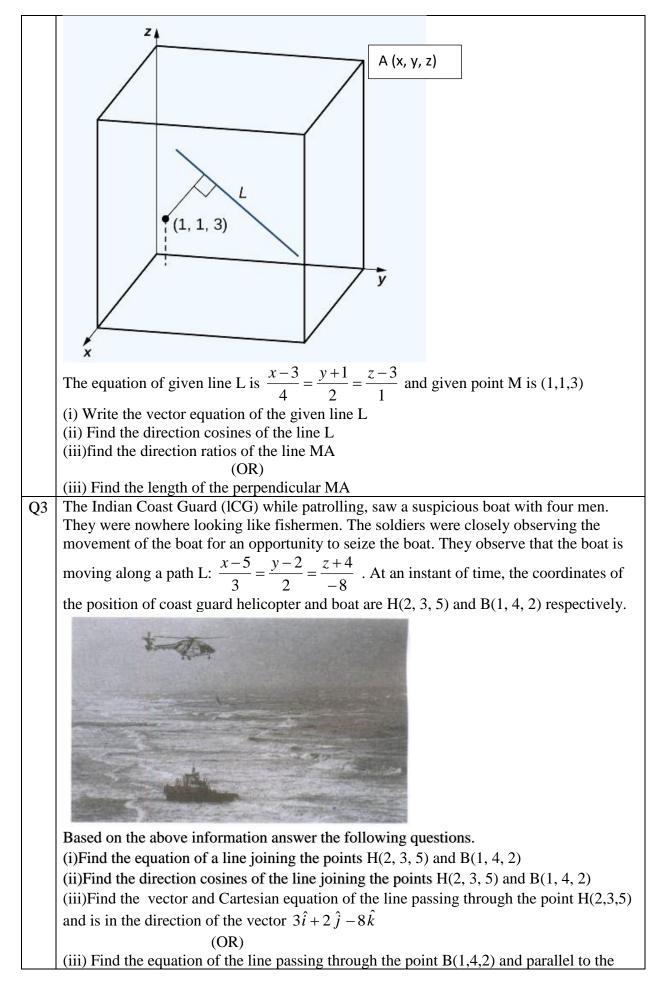
ASSERTION & REASON QUESTIONS

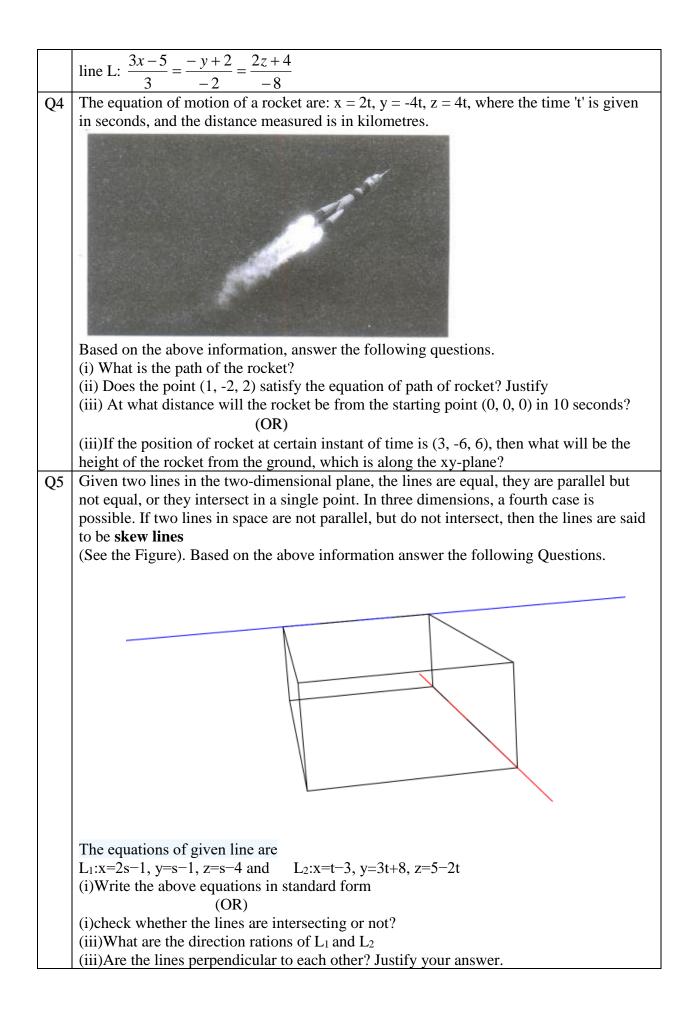
Instructions

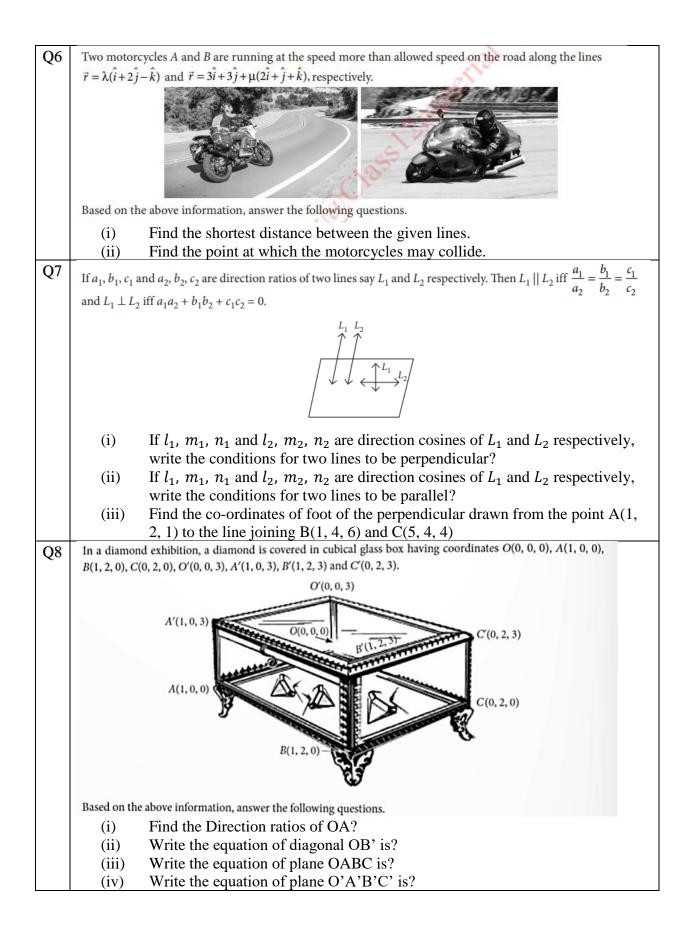
In the following questions , a statement of assertion (A) is followed by a statement of Reason (R) . Choose the correct answer out of the following choices

(a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).

(b) Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).


(c) Assertion (A) is true and Reason (R) is false.


(d) Assertion (A) is false and Reason (R) is true.


1	A line makes angle α , β and γ and with the X, Y & Z axes respectively.
	<u>ASSERTION (A):</u> $sin^2\alpha + sin^2\beta + sin^2\gamma = 2$
	$\underline{\text{REASON}(R)} : \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
2	ASSERTION (A): The distance of the point P(a,b,c) [*] from the x-axis is $\sqrt{b^2 + c^2}$
	<u>REASON(R)</u> : Any point in the Y- axis is of the form (0,y,0)
3	ASSERTION (A): If the x-coordinate of a point P on the join of Q(2,2,1) and R(5,1,-2) is
	4, then its z-coordinate is -1
	<u>REASON(R)</u> : Equation of a line joining 2 points $A(x_1,y_1,z_1)$ & $B(x_2,y_2,z_2)$ is
	$\frac{x+x_1}{z+z_1} = \frac{y+y_1}{z+z_1} = \frac{z-z_1}{z+z_1}$
	$x_1 + x_2$ $y_1 + y_2$ $z_1 - z_2$
4	A line makes angle α , β and γ and with the X, Y & Z axes respectively
	ASSERTION: The direction ratios of x- axis are 0,0,1
	REASON: The X- axis makes angles with coordinate axes are 0°, 90° &90° respectively
5	A line makes the same angle θ with each of the x and z-axes and β with y-axis.
	<u>ASSERTION</u> : If $\sin^2 \beta = 3\sin^2 \theta$ then $\cos^2 \theta = \frac{3}{5}$
	5
	<u>REASON:</u> $\cos^2\theta + \cos^2\beta + \cos^2\theta = 1$
6	A <u>SSERTION</u> : a,b, c are the direction ratios of a line p then the direction ratios of a line
	parallel to the line p is a,2b,3c
	<u>REASON</u> : Any three numbers which are proportional to the direction cosines of a line
	are called the <i>direction ratios</i> of the line.
7	<u>ASSERTION</u> : If a line has direction ratios $2, -1, -2$, its direction cosines. are
	$\frac{2}{3}, \frac{-1}{3}, \frac{-2}{3}$
	3'3'3
	REASON : If <i>l</i> , <i>m</i> , <i>n</i> are direction cosines and <i>a</i> , <i>b</i> , <i>c</i> are direction ratios of a line, then
	$a = \lambda l, b = \lambda m$ and $c = \lambda n$, for any nonzero $\lambda \in R$
8	ASSERTION: The direction cosines of the line passing through the two points
	P(-2, 4, -5) and $Q(1, 2, 3)$ are $3 - 2 - 8$
	P(-2, 4, -5) and Q(1, 2, 3) are $\frac{3}{\sqrt{77}}, \frac{-2}{\sqrt{77}}, \frac{-8}{\sqrt{77}}$
	<u>REASON</u> : The direction ratios of the line segment joining $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$
	may be taken as $x_2 - x_1$, $y_2 - y_1$, $z_2 - z_1$

9	ASSERTION: If a line makes angles 90°, 135°, 45° with the x, y and z-axes
	-1 1
	respectively, then its direction cosines are 0, $\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
	<u>REASON</u> : If a line makes angle α , β and γ and with the X, Y & Z axes respectively
	then its direction cosines are sin α , sin β and sin γ
10	ASSERTION: The direction cosines of a line which makes equal angles with the
	coordinate
	Axes are $\pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}, \pm \frac{1}{\sqrt{3}}$
	<u>REASON:</u> $sin^2\alpha + sin^2\beta + sin^2\gamma = 1$
11.	ASSERTION: The points A $(2, 3, -4)$, B $(1, -2, 3)$ and C $(3, 8, -11)$ are collinear
10	REASON: The direction ratios of AC are $<1,5,-7>$
12	<u>ASSERTION:</u> If O is the origin, $OP = 3$ with direction ratios proportional to -1, 2, -2 then the coordinates of P are (-1/9, 2/9, -2/9)
	<u>REASON</u> : The direction ratios of the line segment joining P (x_1 , y_1 , z_1) and Q(x_2 , y_2 , z_2)
13	may be taken as $x_2 - x_1$, $y_2 - y_1$, $z_2 - z_1$ <u>Assertion (A)</u> : $\frac{x}{1} = \frac{y-3}{-2} = \frac{z}{2}$ and $\frac{x-4}{2} = \frac{y+7}{2} = \frac{z-1}{2}$ are perpendicular.
	Reason (R) : The direction rations of parallel lines are proportional.
14	Assertion (A): The shortest distance between the lines $r = 8i - 9j + 10k + \lambda(3i - 10k)$
11	$r = 15i + 29j + 5k + \mu(3i + 8j - 5k)$ is given by
	14 units.
	<u>Reason (R)</u> : The distance between the parallel lines $r = a_1 + \lambda b$ and $r = a_2 + \lambda b$ is
	given by
	$S.D = \frac{ b \times (a_2 - a_1) }{ b }$
15	<u>Assertion (A)</u> : The part of lines given by $r = i - j + \lambda(2i + k)$ and $r = 2i - k + \mu(i + k)$
	j-k) intersect.
	Reason (R) : Two lines intersect each other if they are not parallel and shortest distance is
16	Zero. <u>Assertion (A)</u> : Vector form of the equation of a line $\frac{x-2}{3} = \frac{y-1}{2} = \frac{3-z}{-1}$ is
10	<u>Assertion (A)</u> : vector form of the equation of a line $\frac{-3}{3} = \frac{-1}{2} = \frac{-1}{-1}$ is
	$r = (2i + j + 3k) \cdot \lambda(3i + 2j + k).$
	<u>Reason (R)</u> : Cartesian equation of a line passing through the points (2, 1, 3) are parallel
1-	to the line $\frac{x-3}{1} = \frac{y-2}{2} = \frac{z-4}{-2}$ is $2x - 4 = y - 1 = 3 - z$.
17	Assertion (A): Skew lines are the lines in space which are neither parallel nor intersecting and lie in different planes.
	intersecting and lie in different planes. Reason (R) : Angles between skew lines is angle between two intersecting lines drawn
	from any point parallel to each of the skew lines.
18	<u>Assertion (A)</u> : The numbers $\frac{11}{113}$, $\frac{12}{113}$, $\frac{132}{133}$ may represent the direction cosines of a line in
	space.
	<u>Reason (R)</u> : Numbers a, b, c represents direction cosines of a line $a^2 + b^2 + c^2 = 1$
19	Assertion (A): The point A (1, 0, 7) is the mirror image of the point B (1, 6, 3) in the line
	$\frac{x}{1} = \frac{y-11}{2} = \frac{z-2}{3}$
	<u>Reason (R)</u> : The line $\frac{x}{1} = \frac{y-11}{2} = \frac{z-2}{3}$ bisects the line segment joining point A (1, 0, 7)
	and B (1, 6, 3) and B (1, 6, 3)
20	Assertion (A): The point A (2, 9, 12), B (1, 8, 8), C (-2, 11, 8), and D (-1, 12, 12) are the
20	$\frac{1}{1}$ vertices of a rhombus.

$\frac{y}{1} = \frac{y}{1} =$ <i>i</i> - <i>s</i> zero. cular if $\frac{y}{2} =$ cting.
i - s zero. cular if $\frac{2}{2} =$ cting.
$\frac{1}{2} = \frac{1}{2}$
$\frac{-2}{2} =$
cting.
cting.
-
hool A
f class
l'eluss
L ₂
L ₂

ANSWERS

ASSERTION & REASON QUESTIONS

1	Using $\sin^2 \alpha = 1$, $\cos^2 \alpha$ we get $\sin^2 \alpha + \sin^2 \theta + \sin^2 \theta$.
1.	Using $sin^2 \alpha = 1 - cos^2 \alpha$ we get $sin^2 \alpha + sin^2 \beta + sin^2 \gamma = 2$: option (a)
2.	Both A & R are true and Reason (R) is a correct explanation of Assertion (A). ∴option (b)
3.	Answer: Assertion (A) is true and Reason (R) is false: option (c)
4.	Answer: (d) Assertion (A) is false and Reason (R) is true.
5.	Answer: a) Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A). $cos^2 \theta + cos2\beta + cos2 \theta = 1 \Rightarrow 2cos2 \theta + 1 - sin2\beta = 1$
	$\Rightarrow 2\cos^2\theta + 3\cos^2\theta - 3 = 0 \Rightarrow \cos^2\theta = \frac{3}{5}$
6.	(c) Assertion (A) is true and Reason (R) is false.
7.	(a)Both Assertion (A) and Reason (R) are the true and Reason (R) is a correct explanation of Assertion (A).
8.	(b)Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
9.	(c) Assertion (A) is true and Reason (R) is false.
10.	(c) Assertion (A) is true and Reason (R) is false.
11.	(b)Both Assertion (A) and Reason (R) are the true but Reason (R) is not a correct explanation of Assertion (A).
12.	(d) Assertion (A) is false and Reason (R) is true.
13.	Option (b) Solution: (A) is true as follows $1 \times 2 + (-2) \times 2 + 2 \times 1 = 0$. Therefore, the lines are perpendicular. (R) is true by definition but not the correct explanation.
14.	Option (b) Solution: (A) is true as follows. If $r = a + \lambda b$; $r = c + \lambda d$ then $S.D = \left \frac{(c-a).(b \times d)}{b \times d} \right = \frac{(7i+38j-5k).(24i+36j+72k)}{\sqrt{24^2+36^2+72^2}} = \left \frac{1176}{\sqrt{7056}} \right = 14 \text{ units.}$ (R) is true by definition but not the correct explanation.
15.	Option (a) `Solution: (A) is true as follows. If $r = a + \lambda b$; $r = c + \mu d$ then $S.D = \left \frac{(c-a).(b \times d)}{b \times d} \right $ $= \frac{(i+j-k).(i+j+2k)}{\sqrt{6}} = 0$
	(R) is true and it is correct explanation.

16.	Option (b)
	Solution: (A) is true as equation of line passing through a point A(a) parallel to the given vector b is $r = a + \lambda b$ and its cartesian form is $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$. (R) is true as follows. Equation line passing through (2, 1, 3) and parallel to the line $\frac{x-3}{1} = \frac{y-2}{2} = \frac{z-4}{-2}$ is $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z-3}{-2}$ = 2(x-2) = y-1 = -(z-3) => 2x - 4 = y - 1 = 3 - z
	But not the correct explanation.
17.	Option (c) Sol: (A) is true by definition of skew lines. (R) is true as skew lines do not intersect, there is no angles between them.
18.	option (a) Solution: (A) is true as follows, $n^2 + (n + 1)^2 = [n(n + 1) + 1]^2$ $11^2 + 12^2 + 132^2 = (11.12 + 1)^2$
	(R) is true and correct explanation.
19.	option (b) Solution: (A) is true as follows, Mid point of AB is M (1, 3, 5). This lies on $\frac{x}{1} = \frac{y-11}{2} = \frac{z-2}{3} - \dots (1)$ D.R of AB are (0, 6, -4) D.R of line (1) is (1, 2, 3) $1 \times 0 + 6 \times 2 + (-4) \times 3 = 0$; Therefore, AB is perpendicular to (1) (R) is true but not the correct explanation of (A)
20.	option (d) Solution: (A) is true. $AB=\sqrt{(2-1)^2 + (9-8)^2 + (12-8)^2} = 3\sqrt{2}$ Similarly, BC=CD=DA= $3\sqrt{2}$ Also AC=BD=6 Therefore, (R) is false.
21.	Option(b) Solution: (A) is true as follows, $SD = \left \frac{(-i+6j-7k).(i-4j+8k)}{\sqrt{81}} \right = 9 \text{ units.}$
	(R) is true but not the correct explanation.

22.	option(a)
	Solution: (A) is true as $\frac{2}{6} = -\frac{1}{3} = \frac{3}{9} = \frac{1}{3}$
	(R) is true as $a \times b = 0$ if a parallel b and is correct explanation.
23.	option(d)
	Solution: A is false, $\frac{x-\frac{3}{2}}{2} = \frac{y-2}{3} = \frac{z-4}{2}$; $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-1}{-2}$ $2 \times 1 + 3 \times 2 + 2 \times -2 \neq 0$
	(R) is true by definition
24.	option(c) Solution: (A) is true, $\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} = 0 \Longrightarrow \theta = \pi/2$
	(R) is false as skew lines do not intersect so there is no angle between them
25.	option(a) Solution: (A) is true, (R) is true and correct explanation of (A).

ANSWERS CASE BASED QUESTIONS

1.	(i) $L1: \frac{x-3}{1} = \frac{y-2}{2} = \frac{z+4}{2} L2: \frac{x-5}{3} = \frac{y+2}{2} = \frac{z}{6}$
	(ii) (ii) The direction ratios of L1 are $\langle 1,2,2 \rangle$, The direction ratios of
	L2 are <3,2,6>
	(iii) (iii) $\cos\theta = \frac{3+4+12}{\sqrt{9}\times\sqrt{49}} = \frac{19}{21} \Longrightarrow \theta = \cos^{-1}\left(\frac{19}{21}\right)$
	(OR)
	(iv) The direction ratios of a line perpendicular to both the lines L_1 and
	L_2 are
	<8,0,-4> or<2,0,-1>
2.	$(i) \vec{r} = 3\hat{i} - \hat{j} + 3\hat{k} + \lambda(4\hat{i} + 2\hat{j} + \hat{k})$
	(ii) $\frac{4}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{1}{\sqrt{21}}$
	(iii) Direction ratios of MA are <4 λ +2,2 λ -2, λ > Using perpendicular
	condition we get $\lambda = 0$
	Direction ratios of MA are $<2,-2,0>$ or $<1,-1,0>$
	(OR)
	(iii) Coordinates of foot of perpendicular is $(3,-1,3)$. MA= $\sqrt{4+4+0} = 2\sqrt{2}$

3.	(i) $\frac{x-2}{-1} = \frac{y-3}{1} = \frac{z-5}{-3}$
	-1 1 -3
	(ii) $\frac{-1}{\sqrt{11}}, \frac{1}{\sqrt{11}}, \frac{-3}{\sqrt{11}}$
	(iii) $\vec{r} = 2\hat{i} + 3\hat{j} + 5\hat{k} + \lambda(3\hat{i} + 2\hat{j} - 8\hat{k}) \& \frac{x-2}{3} = \frac{y-3}{2} = \frac{z-5}{-8}$
	(OR)
	(iii) $\frac{x-1}{1} = \frac{y-4}{2} = \frac{z-2}{4}$
	1 2 -4
4.	x y Z
	(i) Straight line $\frac{x}{2} = \frac{y}{-4} = \frac{z}{4} = t$
	(ii) (ii) Yes: $\frac{1}{2} = \frac{-2}{-4} = \frac{2}{4}$
	(ii) (ii) <i>ies</i> $\frac{1}{2} - \frac{1}{4} - \frac{1}{4}$
	(iii) Distance between $(0,0,0)$ & $(20, -40,40)$ is 60 km
	(OR)
5.	(iv) 6 km
5.	$L_1: \frac{x+1}{2} = \frac{y+1}{1} = \frac{z+4}{1} = s$
	(i) L1: $L_2: \frac{x+3}{1} = \frac{y-8}{3} = \frac{-z+5}{2} = t$
	(i) L1: $\begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
	(i)2s-t=-2, s-3t=9 and s+2t=9. Solving last two questions we get t =0, s= 9.
	Substituting these values first equation doesn't satisfy the equation 2s-t=-2.
	Hence lines do not intersect
	(ii) < 2, 1, 1 > and < 1, 3, -2 >
	$a_1a_2 + b_1b_2 + c_1c_2 = 0$
	(iii) $2+3-2 \neq 0$. Hence are L_1 and L_2 not \perp
6.	(i) Shortest distance = 0
	(ii) The accident occurs at the point $(1, -2, -1)$
7.	(i) $l_1 l_2 + m_1 m_2 + n_1 n_2 = 0$
	(ii) $\frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$
	(iii) $(3, 4, 5)$
8.	(i) <1, 0, 0>
	(ii) $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$
	(iii) $\begin{array}{c} 1 & 2 & 3 \\ z = 0 \end{array}$
	(iv) $z = 3$

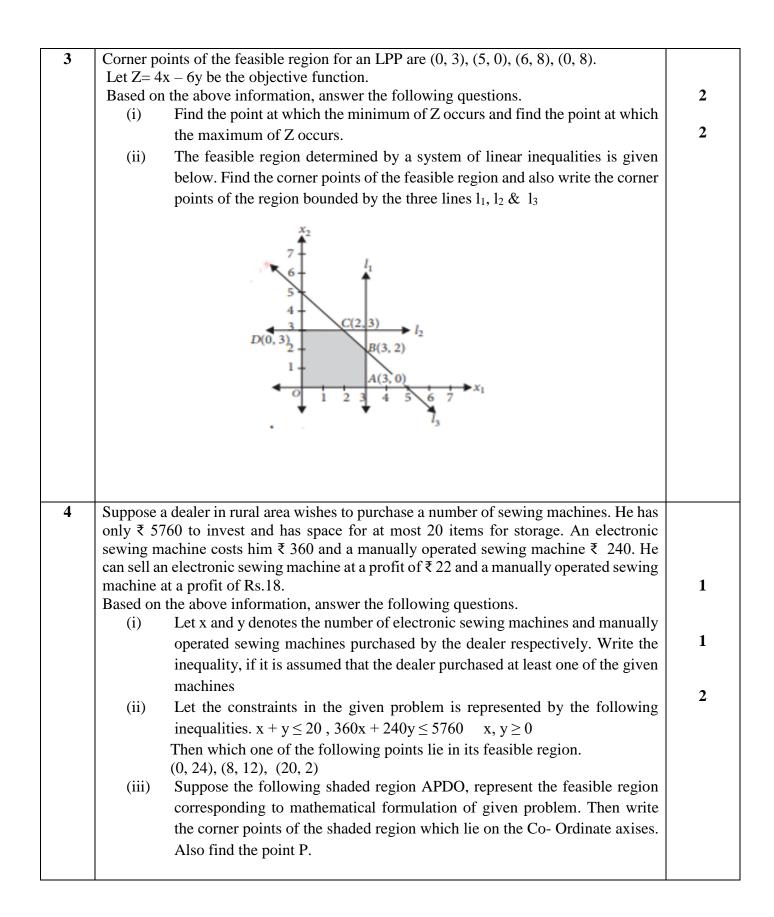
CHAPTER: LINEAR PROGRAMMING

ASSERTION AND REASON BASED MCQS

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is NOT the correct explanation of A
- (C) A is true but R is false
- (D) A is false but R is true

Q.No	QUESTIONS						
1	 Assertion (A): Feasible region is the set of points which satisfy all of the given constraints and objective function too. Reason (R): The optimal value of the objective function is attained at the points on 						
	X-axis only.						
2	Assertion (A) : For the constraints of linear optimizing function $Z = x_1 + x_2$ given by						
	$x_1 + x_2 \le 1$, $3x_1 + x_2 \ge 1$, there is no feasible region. Reason (R): $Z = 7x + y$, subject to $5x + y \le 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$. Out of the corner						
	points of feasible region (3, 0), $(\frac{1}{2}, \frac{5}{2})$, (7, 0) and (0,5), the maximum value of Z occurs						
	at $(7, 0)$.						
	Assertion (A): Feasible region is the set of points which satisfy all of the given						
3	constraints.						
	Reason (R): The optimal value of the objective function is attained at the points on X-axis only.						
4	Assertion (A): It is necessary to find objective function value at every point in the						
_	feasible region to find optimum value of the objective function.						
	Reason(R): For the constrains $2x+3y \le 6$, $5x+3y \le 15$, $x \ge 0$ and $y \ge 0$ cornner points						
	of the feasible region are $(0,2)$, $(0,0)$ and $(3,0)$.						
5	Assertion (A) : For the constraints of linear optimizing function $Z = x1 + x2$ given by $x1 + x2 \le 1$, $3x1 + x2 \ge 1$, $x \ge 0$ and $y \ge 0$ there is no feasible region.						
	Reason (R): $Z = 7x + y$, subject to $5x + y \le 5$, $x + y \ge 3$, $x \ge 0$, $y \ge 0$. The corner points						
	of the feasible region are (0,3), (0,5) and $(\frac{1}{2}, \frac{5}{2})$						
6	Assertion (A): The maximum value of $Z = 11x+7y$ Subject to the constraints are						
	$2x+y \le 6$, $x \le 2$, $x, y \ge 0$, occurs at the point (0,6).						
	Reason (R): If the feasible region of the given LPP is bounded, then the maximum and minimum values of the objective function occurs at corner points.						
7	Assertion (A): If an LPP attains its maximum value at two corner points of the feasible						
	region then it attains maximum value at infinitely many points.						
	Reason (R): If the value of the objective function of a LPP is same at two corners then						
	it is same at every point on the line segment joining the two corner points.						
8	Consider, the graph of constraints stated as linear inequalities as below: $5x+y \le 100$,						
	$x+y \le 60, x, y \ge 0.$						

	100 90 80 70 60 50 8 (10, 50) 40 30 20 10 A(20, 0)
	$\begin{array}{c} X \\ (0, 0) \\ Y \\ (0, 0) \\ y \\ (0, 0) \\ Y \\ (0, 0) $
	Assertion (A): The points (10,50), (0,60), (10,10) and (20,0) are feasible solutions.
	Reason (R): Points within and on the boundary of the feasible region represent feasible
	solutions of the constraints.
9	Assertion (A): The region represented by the set $\{(x,y): 4 \le x^2 + y^2 \le 9\}$ is a convex set.
	Reason (R): The set $\{(x,y): 4 \le x^2 + y^2 \le 9\}$ represents the region between two
	concentric circles of radii 2 and 3.
10	Assertion (A): For an objective function $Z=15x + 20y$, corner points are (0,0), (10,0),
	(0,15) and $(5,5)$. Then optimal values are 300 and 0 respectively.
	Reason (R): The maximum or minimum value of an objective function is known as
11	optimal value of LPP. These values are obtained at corner points. Assertion (A): For the LPP Z= $3x+2y$, subject to the constraints $x+2y \le 2$; x, $y \ge 0$
	both maximum value of Z and Minimum value of Z can be obtained.
	Reason (R): If the feasible region is bounded then both maximum and minimum
	values of Z exists.
12	Assertion (A): The linear programming problem, maximize $Z = x+2y$ subject to
	constraints $x-y \le 10$, $2x + 3y \le 20$ and $x \ge 0$; $y \ge 0$. It gives the maximum value of Z as $40/3$.
	Reason (R): To obtain maximum value of Z, we need to compare value of Z at all the
	corner points of the shaded region.
13	Assertion (A): Consider the linear programming problem. Maximise $Z = 4x+y$ Subject
	to the constraints $x + y \le 50$; $x + y \ge 100$ and $x, y \ge 0$. Then, maximum value of Z is 50.
	Reason (R): If the shaded region is bounded then maximum value of objective
14	function can be determined. Assertion (A): The point (4,2) does not lie in the half plane of $4x + 6y - 24 < 0$
14	Reason (R): The point (1,2) lies in the half plane of $4x + 6y - 24 < 0$
15	The corner points of a feasible region determined by a set of constraints are $P(1,6)$,
	Q(4,5), R(6,1) and S(5,2) and the objective function is $Z = ax + 3by$ where $a, b > 0$
	Assertion (A): The relation between a and b such that the maximum Z occur at P and
	Q is $a = b$
	Reason (R): The relation between a and b such that the maximum Z occur at P and Q is $a = 3b$
16	Assertion (A) : If the corner points of the feasible region for a linear programming
10	problem are $P(0,4)$, $Q(1,4)$, $R(4,1)$, and $S(12,-1)$, then minimum value of objective
	function $Z = 2x + 4y$ is at the point R(4,1)
	Reason (R): If the corner points of the feasible region for a linear programming
	problem are P(0,4), Q(1,4), R(4,1), and S(12,-1), then maximum value of objective
17	function $Z = 2x + 4y$ is 20
17	Assertion (A) : Constraints are inequations Reason (R): Linear inequalities related to variables involved, are known as constriants


18	Assertion (A) : Common solution of all the given constraints in LPP, is known as feasible region.						
	Reason (\mathbf{R}): A linear function $Z = ax + by$, which has to be maximized or minimized is known as an objective functioned						
19	The corner points of a feasible region are $(0,0)$, $(3,0)$ and $(0,3)$ and the objective function $Z = 4x + 7y$ Assertion (A) : Minimum value of Z is 12 Reason (R): Maximum value of Z is 21						
20	Assertion (A) : $Z = 20x_1 + 20x_2$, subject to $x_1 \ge 0$, $x_2 \ge 2$, $x_1 + 2x_2 \ge 8$, $3x_1 + 2x_2$ $5x_1 + 2x_2 \ge 20$. Out of the corner points of feasible region $(8, 0)$, $(\frac{5}{2}, \frac{15}{2})$, $(\frac{7}{2}, \frac{9}{4})$ at10), the minimum valueof Z occurs at $(\frac{7}{2}, \frac{9}{4})$.Corner Points $Z = 20x_1 + 20x_2$						
	Reason (R):	$(8, 0)$ $\left(\frac{5}{2}, \frac{15}{2}\right)$ $\left(\frac{7}{2}, \frac{9}{4}\right)$ $(9, 10)$	160 125 115 minimum				
		(0, 10)	200				

ANSWERS Assertion and Reason based MCQs

1	С	2	В	3	С	4	D	5	Α
6	А	7	А	8	Α	9	D	10	Α
11	А	12	А	13	D	14	В	15	C
16	В	17	С	18	В	19	D	20	A

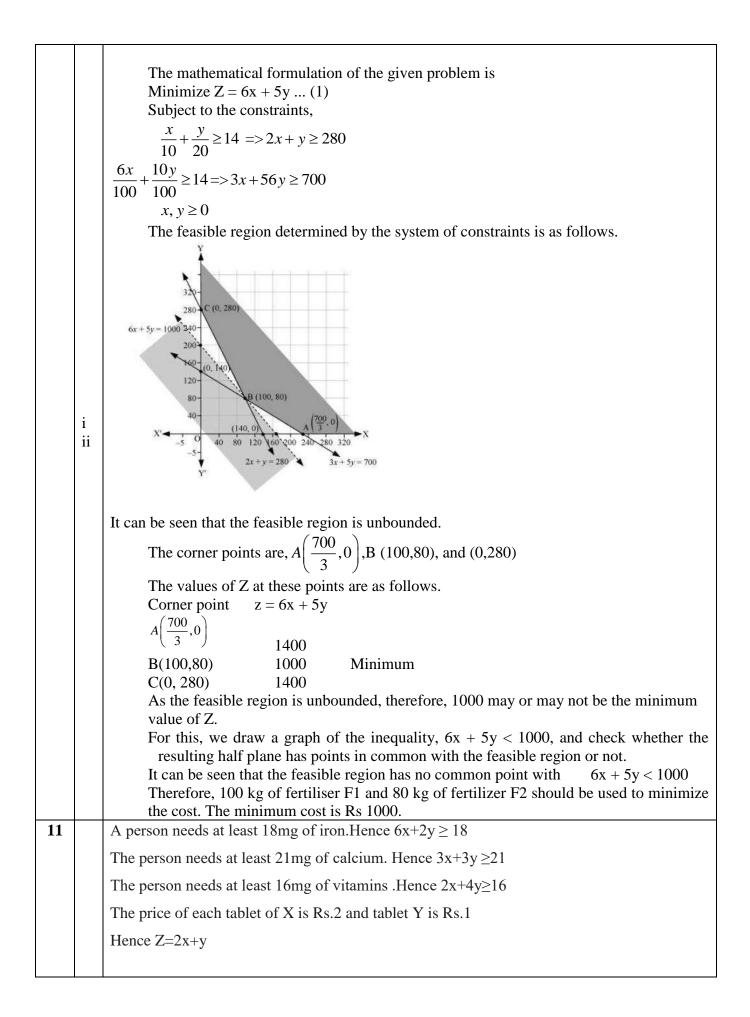
CASE BASED QUESTIONS

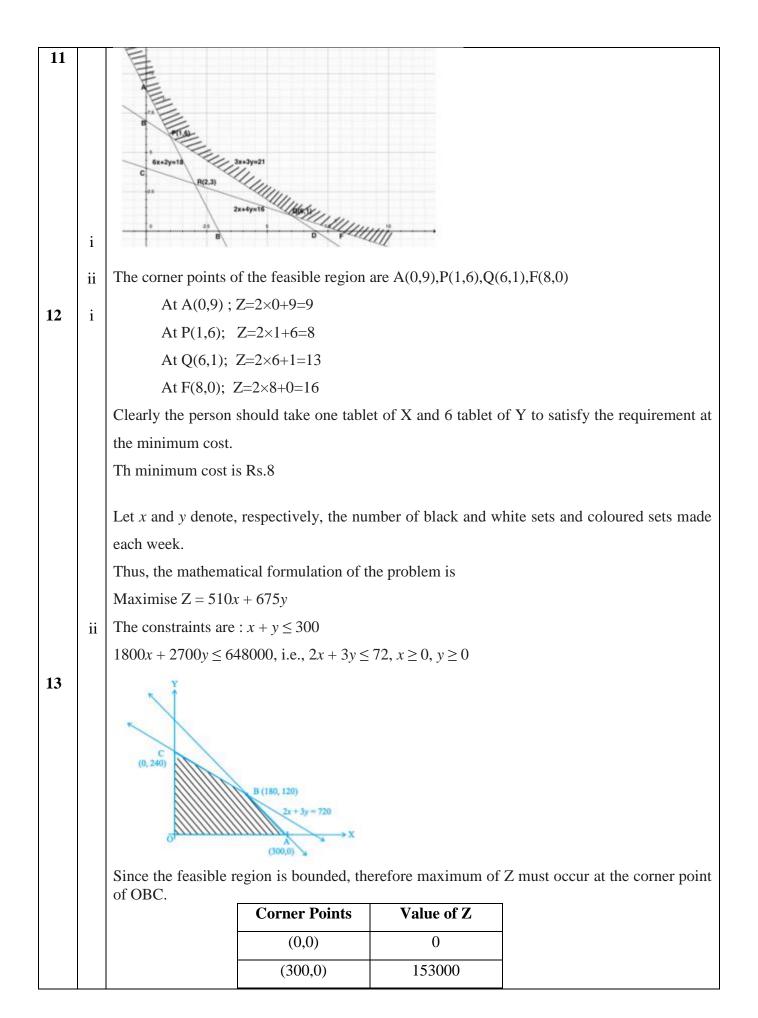
Q.NO	QUESTIONS	MARKS
1	 Linear programming is the method for finding the optimal values (maximum or minimum) of quantities subject to the constraints when relationship is expressed as linear equations or in equations. Based on the above information, answer the following questions. (i) The optimal value of the objective function is attained at points. (ii) The solution of the inequality 3x + 4y < 12 is (iii) Find the Maximum of Z= 2x + 5y that occurs at the corner points of the feasible region. 	1 1
	y = 1 = 1 y = 1	2
	(OR) The corner of the points of the feasible region determined by the system of linear constraints are $(0, 10)$, $(5, 5)$, $(15, 15)$, $(0, 20)$. Let $Z = px + qy$, where p, $q > 0$. Find the condition on p and q so that the maximum of Z occurs at both the points (15, 15) and $(0, 20)$	
2	Deepa rides her car at 25 km/hr . She has to spend Rs. 2 per km on diesel and if she rides it at a faster speed of 40km/hr, the diesel cost increases to Rs. 5 per km. She has Rs.100 to spend on diesel. Let she travels x kms with speed 25 km/hr and y kms with speed 40 km/hr. the feasible region for the LPP is shown below.	
	 Based on the above information, answer the following questions. (i) What is the point of intersection of line l₁ and l₂ (ii) What are the corner points of the feasible region shown in above graph? (iii) If Z = 6 x- 9y be the objective function, then the maximum value of Z – the minimum value of Z 	

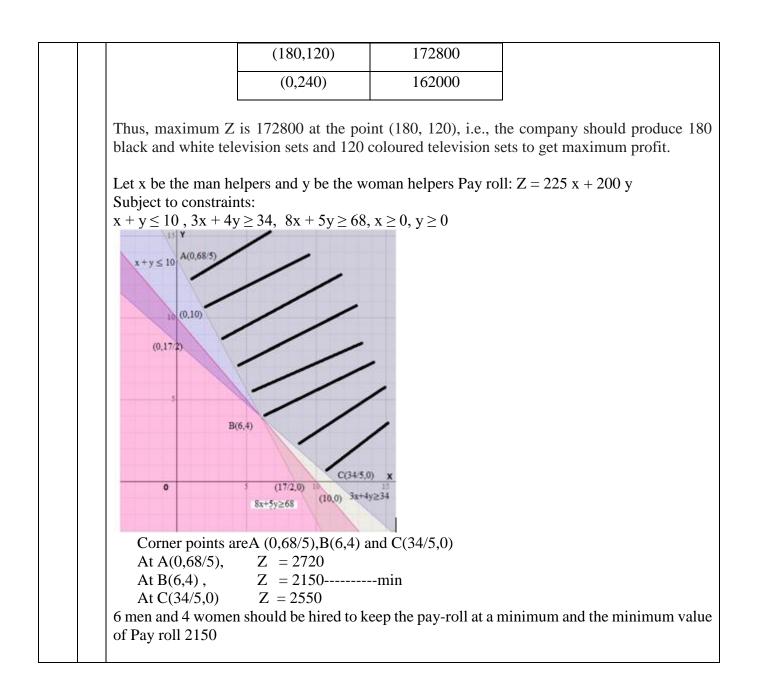
	D D D D A A A A A A A A A A	
5	Let R be the feasible region (convex polygon) for a linear programming problem and let Z = ax + by be the objective function. When Z has an optimal value (maximum or minimum), where the variables x and y are subject to constraints described by linear inequalities, this optimal value must occur at a corner point (vertex) of the feasible region. Based on the above information, answer the following questions. (i) In solving the LPP : "minimize Z= 6x + 10y subject to the constraints $x \ge 6, y \ge 2, 2x + y \ge 10, x \ge 0, y \ge 0$ " redundant constraints are $x \ge 6, y \ge 2$ (or) $2x + y \ge 10, x \ge 0, y \ge 0$ (or) $x \ge 6$ (ii) The feasible region for a LPP is shown shaded in the figure. Let F = $3x - 4y$ be the objective function. Find the Maximum value of F.	2 2
6	An aeroplane can carry a maximum of 200 passengers. A profit of Rs. 1000 is made on each executive class ticket and a profit of Rs. 600 is made on each economy class ticket. The airline reserves at least 20 seats for the executive class. However, at least 4 times as many passengers prefer to travel by economic class. It is given that the number of executive class tickets is x and that of economy class ticket is y. Based on above information answer the following questions: (i) What is the maximum value of x+ y (ii) What is the relation between x and y (iii) What should be the objective function to get maximum Profit. What is the profit when x = 20 and y = 80	1 1 2

7	 The above feasible region is subject to the following constraints: : x + 2y ≥ 10, x + y ≥ 6, 3x + y ≥ 8, x, y ≥ 0 (i) The feasible region is bounded or unbounded? (ii) If the objective function is Z= 3x + 5y, then how do you conclude the minimum or maximum value of the function in case of unbounded feasible region (iii) If an LPP admits optimal solution at two consecutive vertices of a feasible region, then the optimal solution occurs at 	1 2 1
8	 The graph given below is subject to the following constraints : 2x + 4y ≤ 8, 3x + y ≤ 6, x + y ≤ 4, x ≥ 0, y ≥ 0 (i) Find the corner points of the feasible region (ii) Write equation of lines other than the Co-ordinate Axises which represent the sides of the feasible region. 	222
9	A factory manufactures two types of screws, A and B. Each type of screw requires the use of two machines, an automatic and a hand operated. It takes 4 minutes on the automatic and 6 minutes on hand operated machines to manufacture a package of screws A, while it takes 6 minutes on automatic and 3 minutes on the hand operated machines to manufacture a package of screws B. Each machine is available for at the the most 4 hours on any day. The manufacturer can sell a package of screws A at a profit of Rs 7 and screws B at a profit of Rs10. Assuming that he can sell all the screws he manufactures. Assume that factory manufactures x screws of type A and y screws of type B. Based on the above information answer the following questions:	

	 (i) Write the objective function to maximize the profit . (ii) What are number of screws of each type so that profit is maximum ? (iii) What is the maximum profit ? 	1 2 1
10	 A farmer uses two types of fertilizers F1 and F2 in his field. F1 consists of 10% nitrogen and 6% phosphoric acid and F2 consists of 5% nitrogen and 10% phosphoric acid. After testing the soil conditions, a farmer finds that she needs at least 14 kg of nitrogen and 14 kg of phosphoric acid for her crop. If F1 cost Rs 6/kg and F2 costs Rs 5/kg. (i) Determine how much of each type of fertilizer should be used so that nutrient requirements are met at a minimum cost. (ii) What is the minimum cost? 	2
11	A doctor suggests a patient two types tablets X and Y in order to supplement daily diet	2
	and patient wishes to take some X and some Y tablets. The contents of iron, calcium	
	and vitamins in X and Y (in milligrams per tablet) are given as below:	
	Tablets Iron Calcium Vitamin	
	X 6 3 2	
	Y 2 3 4	2 2
	The person needs at least 18 milligrams of iron, 21 milligrams of calcium and 16	-
	milligram of vitamins. The price of each tablet of X and Y is Rs 2 and Re 1 respectively.	
	(i) How many tablets of each should the patient take in order to satisfy the above	
	requirement at the minimum cost?	
	(ii) What will be the minimum cost ?	
12	A manufacturing company makes two types of television sets; one is black and white	
	and the other is colour. The company has resources to make at most 300 sets a week.	
	It takes Rs 1800 to make a black and white set and Rs 2700 to make a coloured set.	
	The company can spend not more than Rs 648000 a week to make television sets. If it	
	makes a profit of Rs 510 per black and white set and Rs 675 per coloured set. Assume	2
	that company makes x number of black and white T.V. and y number of colour T.V.	2
	Based on the above information answer the following questions :	2
	(i) Write the objective function representing this LPP and Write the constraints	
	for this LPP.	
	(ii) How many sets of each type should be produced so that the company has maximum profit?	


13	According to past experience, a man can handle 300 letters and 80 packages per day, on the average, and a woman can handle 400 letters and 50 packets per day. The postmaster believes that the daily volume of extra mail and packages will be no less than 3400 and 680 respectively. A man receives < 225 a day and a woman receives < 200 a day. Assume that x and y the number of men and women helpers. Based on the above information answer the following questions :	
	(i) Write the objective function representing this LPP and Write the constraints for this LPP	2
	(ii) How many men and women helpers should be hired to keep the pay- roll at a minimum and What is the minimum value of Pay roll ?	2


ANSWERS CASE BASED QUESTIONS


1	i	When we solve an L.P.P. graphically, the is attained at corner points of the feasible	e optimal (or optimum) value of theobjective function e region.
	ii	ar that it contains the origin but not the points on the	
	iii	Maximum of objective function occurs	A *
		Corner points	Z=2x+5y
		(0,0)	0
		(7,0)	14
		(6,3)	27
		(4,5)	33 ← maximum
		(0,6)	30
		Value of $Z = px + qy$ at (15, 15) = $15p + and$ that at (0, 20) = 20 q . According to given condition, we have 1	$5p + 15q = 20q \Rightarrow 15p = 5q \Rightarrow q = 3p$
2	i	Let $B(x, y)$ be the point of intersection o 2x + 5y = 100 (1) $x + y = 100$	f the given lines 1 - 8x + 5y = 20 (2)
		$2x + 5y = 100 (1) \frac{x}{25} + \frac{y}{40} = $ Solving (1) and (2), we get $x = \frac{50}{3}$, $y = \frac{4}{3}$	$1 \implies 8x + 5y = 20 - (2)$ $\frac{40}{3} \qquad \therefore \text{ The point of intersection } B(x,y) = \left(\frac{50}{3}, \frac{40}{3}\right)$

	ii	the corner points of the	e feasible region shown in graph a	e (0, 0), (25, 0), $\left(\frac{50}{3}, \frac{40}{3}\right)$ (0, 20)			
	iii	Corner Points	Value of $Z = 6x - 9y$				
		(0, 0)	0				
		(25, 0)	$150 \leftarrow Maximum$				
		$\left(\frac{50}{3},\frac{40}{3}\right)$	-20				
		(0, 20)	-180				
		Corner Points	Value of $Z = 6x + 3y$				
		(0, 0)	$0 \leftarrow Minimum$				
		(25, 0)	150				
		$\left(\frac{50}{3},\frac{40}{3}\right)$	140				
		(0, 20)	60				
		the maximum value of	f Z - the minimum value of Z = 15	0 - 0 = 150			
3	i	Corner Point	ts Value of $Z = 4x - 6y$				
		(0, 3)	$4 \times 0 - 6 \times 3 = -18$				
		(5, 0)	$4 \times 5 - 6 \times 0 = 20$				
		(6,8)	$4 \times 6 - 6 \times 8 = -24$				
		(0, 8)	$4 \times 0 - 6 \times 8 = -48$				
		Minimum value of Z i	s –48 which occurs at (0, 8).	_			
			is 20, which occurs at $(5, 0)$.				
	ii	The corner points of the	the feasible region are $O(0, 0)$, $A(3, 0)$	0), B(3, 2), C(2, 3), D(0, 3)			
4	i	x + y > 0					
	ii	Since (8, 12) satisfy al	1 the inequalities therefore (8, 12)	s the point in its feasible region.			
	iii			xis is $(0, 20)$. The point P is $(8,12)$			
5	i	When $x \ge 6$ and $y \ge 2$,	then $2x + y \ge 2 \times 6 + 2$, <i>i.e.</i> , $2x + y$	≥ 14			
		-	d $2x + y \ge 10$ are automatically sat	sfied by every point of the region			
		$\{(x, y) : x \ge 6\} \cap \{(x, y) \in X\}$	$y): y \ge 2\}$				
	ii	Corner Point	Value of $F = 3x - 4y$	7			
		(0, 0)	$3 \times 0 - 4 \times 0 = 0 \leftarrow Maximum$				
		(6, 12)	$3 \times 6 - 4 \times 12 = -30$				
		(6, 16)	$3 \times 6 - 4 \times 16 = -46$				
		(0, 4)	$3 \times 0 - 4 \times 4 = -16$				
		The maximum of F is 0					
6	i	200					
	ii	$y \ge 4x$					
	iii						
7	i	,	unbounded				
7	i	The feasible region is	unbounded				

	11	ii In case the feasible region is unbounded, (a) m is the minimum value of 7 if the open half plane determined by $2x + 5y < m$								
		(a) m is the minimum value of Z, if the open half plane determined by $3x + 5y < m$ has								
		point in common with the feasible region. Otherwise Z has no minimum value.								
		(b) M is the maximum value of Z, if the open half plane determined by $3x + 5y > M$ has								
		no point in common with the feasible region. Otherwise Z has no maximum value.								
	iii	the optimal solution occurs at every point on the line joining these two points.								
8	i	The corner points are O(0,0), A (0, 2), B (1.6, 1.2), C (2, .0)								
	ii	2x + 4y = 8 and $3x + y = 6$								
9	i Let the factory manufacture x screws of type A and y screws of type B on each day Therefore, $\times \ge 0$ and $y \ge 0$									
		The Objective function is to Maximize $Z = 7x + 10y$								
	ii	The given information can be compiled in a table as follows.								
		Screw A Screw B Availability								
		Automatic Machine (min) 4 6 $4 \times 60 = 240$								
		Hand Operated Machine (min) 6 3 $4 \times 60 = 240$								
		$\frac{1}{100} \text{ operated Machine (IIIII)} = 0 \qquad 5 \qquad 4 \times 00 - 240$								
		The constraints are $4x + 6y \le 240$; $6x + 3y \le 240$; $\times \ge 0$ and $y \ge 0$								
		The constraints are $1x + 0y = 210^{\circ}$, $0x + 0y = 210^{\circ}$, $x = 0^{\circ}$ and $y = 0^{\circ}$								
		l l l l l l l l l l l l l l l l l l l								
		W -								
		80 (0, 80)								
		70-								
		60-								
		× 50-								
		40 (0, 40)								
		30-								
		20- B (30, 20)								
		10-								
		(40,0) A (60,0) X								
		-10 10 20 30 40 50 60 20 80 -10-								
		$-10^{-10^{-1}}$ 6x + 3y = 240 $4x + 6y = 240$								
		The corner points are A (40, 0), B (30, 20), and C (0, 40).								
		The values of Z at these corner points are asfollows.								
		Corner point $Z = 7x + 10y$								
		A (40, 0) 280								
		B(30, 20) 410 Maximum								
		C (0, 40) 400								
		The maximum value of Z is 410 at $(30, 20)$.								
		Thus, the factory should produce 30 packages of screws A and 20 packages of screws B								
		to get the maximum profit of Rs 410.								
	iii	The maximum profit is Rs 410								
10		Let the farmer buy x kg of fertilizer F1 and y kg of fertilizer F2. Therefore, $x \ge 0$ and $y \ge 0$								
		The given information can be complied in a table asfollows.								
		Nitrogen (%) Phosphoric Acid (%) Cost (Rs/kg)								
		$F_1(x)$ 10 6 6								
		F ₂ (y) 5 10 5								
		Requirement (kg) 14 14								
L	I									

CHAPTER: PROBABILITY ASSERTION-REASON BASED QUESTIONS

	 In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true.
1	Assertion (A) : Let A and B are independent events. If $P(A) = 0.2$ and $P(B) = 0.1$ then $P(A \cap B) = 0.02$
	Reason (R): For independent events A and B, $P(A \cap B) = P(A) \times P(B)$
2	Assertion (A) : Let A and B are independent events. If $P(A) = 0.4$, $P(B) = p$ and $P(A \cup B) = 0.6$, then $3p = 1$ Reason (R): For independent events A and B, $P(A \cap B) \neq P(A) \ge P(A)$
3.	Assertion (A) : Let A and B are independent events. If $P(A) = p$, $P(B) = 2p$ and $P(Exactly one of A,B) = \frac{5}{9}$, then $p = \frac{3}{5}$. Reason (R): The value of $p = \frac{1}{3}$, $\frac{5}{12}$
4	Assertion (A) : Let A and \overline{B} are independent events then, $P(\overline{A} \cup B) = 1 - P(A)$ $P(\overline{B})$ Reason (R): $P(\overline{A} \cup B) = P(A \cap \overline{B})$
5	Assertion (A) : Let A and B are mutually exclusive events. If $P(A) = \frac{1}{2}$, $P(B) = p$ and $P(A \cup B) = \frac{3}{5}$, then $p = \frac{1}{5}$ Reason (R): For mutually exclusive events A and B, $P(A \cup B) = P(A) + P(B)$
6	Assertion (A) : If A and B are any two events such that $P(A) + P(B) - P(A \cap B) = P(A)$, then $P(A/B) = 1$ Reason (R): For any two events A and B, $P(B/A) = \frac{P(A \cap B)}{P(A)}$.
7	Assertion (A): Given that the probability of 'Ajay' speaks truth is $\frac{4}{5}$. When a die is thrown once Ajay reports that 6 appears, then the probability that actually there was actually 6 appeared is $\frac{4}{11}$.
	Reason (R): Two events are independent then
	$P(A \cap B) = P(A) \times P(B)$

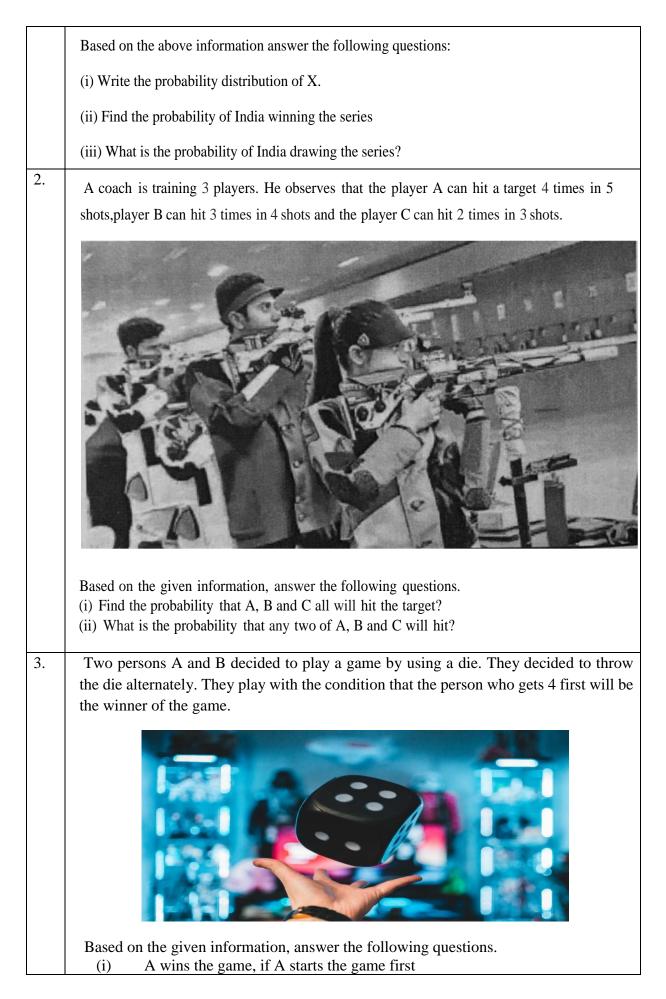
8	Assertion (A) : If A and B are any two events such that $2P(A) = P(B) = \frac{5}{13}$, and $P(A/B) = \frac{2}{5}$ then $P(A \cup B) = \frac{11}{26}$
	Reason (R): For any two events A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
9	Assertion (A) : A die is thrown. If E is the event the number appearing is a multiple of 3 and F be the event the number appearing is even. The events E and Fare not independent.
	Reason (R): Two events E and F are independent then $P(E \cap F) = P(E) \cdot P(F)$.
10	Assertion (A) : A speaks truth in 60% of the cases, while B in 90% of the cases. Then the percent of cases are they likely to contradict each other in stating the same fact is $\frac{21}{50}$
	Reason (R): A and B are two independent events, then the probability of occurrence of at least one of A and B is $1 - P(\overline{A})P(\overline{B})$
11	Assertion (A) : A die is thrown twice and the sum of the numbers appearing is observed to be 6. Then the probability that the number 4 has appeared at least once is $\frac{2}{5}$.
	Reason (R): E and F are any two events, then $P(E/F) = \frac{P(E \cap F)}{P(F)}$.
12	Assertion (A) : For any two events A and B, if P(A) = 0.3, P(B) = 0.5 and $P(A/B) = 0.4$, then $P(B/A) = \frac{2}{5}$
	Reason (R): For any two events A and B, $P(B/A) = \frac{P(A \cap B)}{P(A)}$
13	Assertion (A) : A and B are mutually exclusive events then $P(A/B) = 0$
	Reason (R): A and B are mutually exclusive events then $A \cap B = \{ \}$
14	Assertion (A) : If $P(A) = \frac{2}{3}$, $P(B) = \frac{1}{2}$ and $P(A \cup B) = \frac{5}{6}$, then the events A and B are independent.
	Reason (R): Events A and B are independent then $P(A \cup B) = P(A) \times P(B)$
15	Assertion (A) In answering an MCQ Test a student either knows the answer or
	guesses. Let the probability that he knows answer is $\frac{3}{4}$ and that of he guesses is $\frac{1}{4}$.
	Assume that a student guesses the answer will be correct with probability $\frac{1}{4}$. Then
	the probability that he knows the answer given that he answered it correctly is $\frac{12}{13}$.
	Reason (R): The probability of a sure event is 1
16	Assertion (A) : The mean of a number obtained in throwing a die having
	3 on three faces ,2 on two faces and 5 on one face is 2.
	Reason (R) : Mean is also called Average, Expectation or Expected value as E

17								
	Χ	0	1	2	3	4	5	6
	P(X)	С	2C	2C	3C	4 C ²	5 2C ²	$\frac{6}{7C^2+C}$
	Assertio	n (A) : V	alue of C	is $\frac{1}{10}$				
	Reason (R): Using the formula $\sum P_i = 1$,Assertion (A): The Mean number of tails in three throws of a coin is 1.5							
18		. ,				on is $\sum(x)$		1.5
19			(X =1) = 1		K can take	the values	5 0,1,2 and	ļ
			$\begin{array}{l} \mathbf{X} \) \ = \mathbf{E}(\mathbf{X}) \\ \text{, and } \mathbf{E} \end{array}$		$x^2p(x))$			
20			For any two $P(A \cap B)$		and B, <i>F</i>	$P\left(\frac{\bar{A}}{\bar{B}}\right) = 3$	5/8 , given	$P(\bar{A}) = \frac{1}{2}$
	Reason ((\mathbf{R}) : A a	nd B are ii	ndependen	t events.			
21	tosses a one head	Assertion (A) Suppose a girl throws a die. If she gets a composite number, she tosses a coin two times, otherwise she tosses a coin only once. If she gets exactly one head then the probability that she does not get a composite number in the throw of a die is $\frac{2}{3}$.						
		Reason (R): The Sample Space of the above experiment is $S = 1H, 1T, 2H, 2T, 3H, 3T, 5H, 5T, 4HH, 4HT, 4TH, 4TT, 6HH, 6HT, 6TH, 6TT }$						
22		. ,	the outcon dependent		event does	not affect	the outcom	ne of another
	Reason (R): $P(A \cap B) = P(A) P(B)$.							
23	Assertion (A): The probability distribution of a random variable is given below and value of k is 1 / 32.							
	X		2	3		4	5	
	P(X) Reason (5/k ng the form	$\frac{7/k}{\text{nula } \sum P_i}$	=1.	9/k	11,	/ k
24	Assertion (A): The Probability of getting an even number on the die and a spade card in a single event of throwing a die and selecting a card is 1/8. Reason (R); Both are not independent events.							
25	1 /3		ean of gett $P(X) \leq$	-	in throwin	ig pair of c	lice simult	aneously is

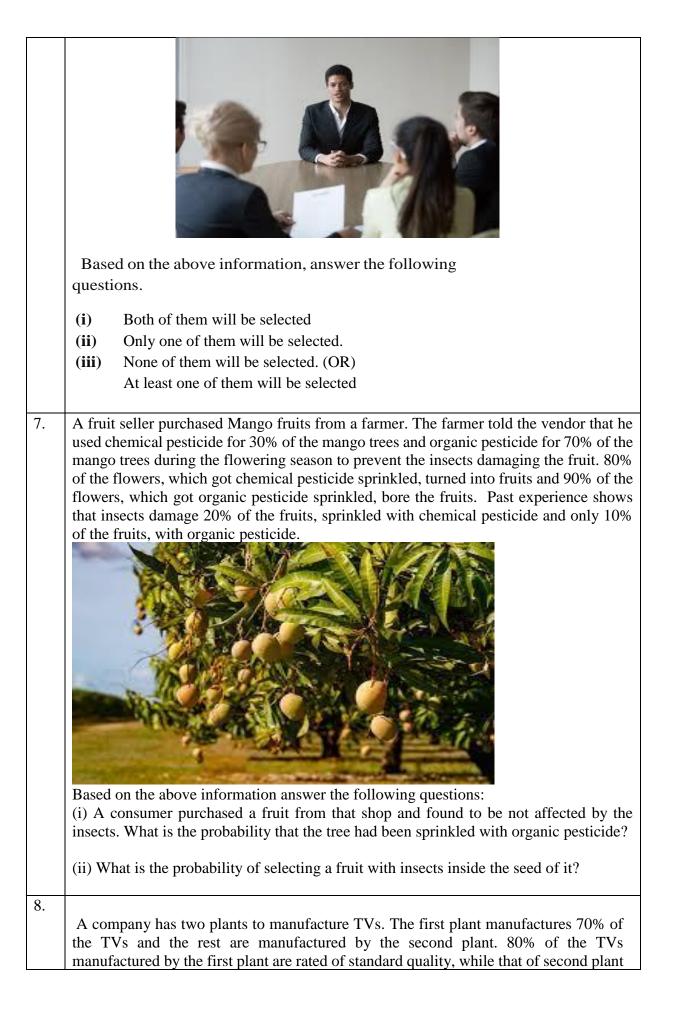
26	Assertion (A): Probability of drawing four kings, provided they are drawn successively from a deck of 52 cards is $\frac{1}{270721}$ Reason (R): P (A \cap B \cap C \cap D) = P (A) × P $\left(\frac{A}{B}\right) × P \left(\frac{C}{A \cap B}\right) × P \left(\frac{D}{A \cap B \cap C}\right)$
	ANGWEDS
	<u>ANSWERS</u>
1	Answer: (a) Both A and R are true and R is the correct explanation of A. $P(A \cap B) = P(A) \times P(B) = 0.2 \times 0.1 = 0.02$
2	Answer: A is true but R is false. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $= P(A) + P(B) - P(A) \times P(B)$ $0.6 = 0.4 + p - 0.4 p$ $p = \frac{1}{3}$ $3p = 1$
3	Answer: (d) A is false but R is true. $p(1-2p)+(1-p)(2p) = \frac{5}{9}$ $p = \frac{1}{3}, \frac{5}{12}$
4	Answer: A is true but R is false. $P(\overline{A} \cup B) = 1 - P(A \cap \overline{B}) = 1 - P(A) P(\overline{B})$ (since A and \overline{B} are independent)
5	Answer: (d) A is false but R is true. $P(A \cup B) = P(A) + P(B)$ $\frac{3}{5} = \frac{1}{2} + p$ $P = \frac{1}{10}$
6	Answer: (b) Both A and R are true but R is not the correct explanation of A. $P(A) + P(B) - P(A \cap B) = P(A)$ $P(B) - P(A \cap B) = 0$ $P(B) = P(A \cap B)$ $\frac{P(A \cap B)}{P(B)} = 1$ $P(A/B) = 1$
7	$E_{1} \rightarrow A jay \ speaks \ truth; \ E_{2} \rightarrow A jay \ does \ not \ speak \ truth$ $A \rightarrow A jay \ reports \ 6 \ appeared$ $P(E_{1}/A) = \frac{P(A/E_{1}) \ P(E_{1})}{P(A/E_{1})P(E_{1}) + P(A/E_{2}) \ P(E_{2})}$

	1 4
	$\frac{\frac{1}{6} \times \frac{4}{5}}{\frac{1}{6} \times \frac{4}{5} + \frac{5}{6} \times \frac{1}{5}} = \frac{4}{11}$
	$\frac{1}{2} \times \frac{4}{5} + \frac{5}{2} \times \frac{1}{5} - \frac{1}{11}$
	6 5 6 5
	Assertion is true
	Peason is also true but it is not the correct reason. So the answer is (b)
8	Reason is also true but it is not the correct reason. So the answer is (b)Answer: (a) Both A and R are true and R is the correct explanation of A.
Ũ	$P(A/B) = \frac{2}{2}$
	$\frac{P(A \cap B)}{P(B)} = \frac{2}{5}$
	$P(A \cap B) = \frac{2}{13}.$
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = $\frac{5}{26} + \frac{5}{13} - \frac{2}{13}$
	$=\frac{5}{26}+\frac{5}{13}-\frac{2}{13}$
	$=\frac{11}{26}$
	26
9	Answer: (d) A is false but R is true.
	$P(E) = \frac{1}{3}, P(F) = \frac{1}{2}, P(E \cap F) = \frac{1}{6}.$
	$P(E).P(F) = \frac{1}{6}$
	E and F are independent
10	Answer: (b) Both A and R are true but R is not the correct explanation of A.
	Required probability = $P(A \cap \overline{B}) + P(\overline{A} \cap B)$
	$= \frac{6}{10} \times \frac{1}{10} + \frac{4}{10} \times \frac{9}{10}$ $= \frac{6}{100} + \frac{36}{100} = \frac{42}{100} = \frac{21}{50}$
	$=\frac{\frac{10}{6}}{6} + \frac{\frac{36}{36}}{6} = \frac{\frac{42}{2}}{21} = \frac{21}{21}$
	100 100 100 50
11	Answer: (a) Both A and R are true and R is the correct explanation of A.
	E : number 4 appears at least once
	F: sum of the numbers appearing is 6 $F = P(F \cap F)$
	$P(E/F) = \frac{P(E \cap F)}{P(F)}.$
	$=\frac{\frac{2}{36}}{\frac{5}{5}}=\frac{2}{5}$.
	$\frac{5}{36}$ 5.
12	Answer: A is false but R is true.
14	$P(A/B) = \frac{P(A \cap B)}{P(B)}$
	$P(A \cap B) = 0.2$ $P(B \land A) = \frac{P(A \cap B)}{2} = \frac{0.2}{2} = \frac{2}{2}$
	$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{0.2}{0.3} = \frac{2}{3}$
13	Answer: (a) Both A and R are true and R is the correct explanation of A.
	$P(A/B) = \frac{P(A \cap B)}{P(B)} = \frac{0}{P(B)} = 0$
	(AB) = (B) = (B) = (B) = (B)
14	Answer: (c) A is true but R is false.
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$P(A \cap B) = \frac{1}{3}$
L	3

	$P(A) \times P(B) = \frac{1}{3}$ $P(A \cap B) = P(A) \times P(B).$				
15	$E_1 \rightarrow student knows the answer; E_2 \rightarrow student guesses the answer$ $A \rightarrow student answered it correctly$ $P(E_1/A) = \frac{P(A/E_1) P(E_1)}{P(A/E_1) P(E_1) + P(A/E_2) P(E_2)}$				
	$= \frac{1 \times \frac{3}{4}}{1 \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4}} = \frac{12}{13}$ Assertion is true				
16	Reason is also true and it is the correct reason. So the answer is (a) (b)				
	$\begin{array}{ c c c c c c c } \hline X & 1 & 2 & 5 \\ \hline P(x) & 3/6 & 2/6 & 1/6 \\ \hline Mean & = \sum x \ p(x) \ = \frac{(3+4+5)}{6} \ = 12/6 \ = 2 \end{array}$				
17	(a) formula $\sum P_i = 1$, so 9C + 10 C ² = 1 , 10C ² + 9C - 1 = 0 10 C(C+1) - 1 (C+1) = 0, (10C - 1) (C+1) = 0 (C+1) \neq 0. (10C - 1) = 0 GIVES C = 1/10				
18	(a) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
19	(a) X 0 1 2 P(X) P P 1-2P E(x) = $\sum x p(x) = E(x^2) = \sum (x^2 p(x))$ P+2-4P = P+4-8P, 4P=2. P=1/2				
20	$ \begin{array}{c} (c) \\ P\left(\frac{\bar{A}}{\bar{B}}\right) = \frac{p\left(\bar{A}\cap\bar{B}\right)}{P(\bar{B})} = \frac{(1-P(A\cup B))}{\overline{P(B)}} = \frac{(1-P(A\cup B))}{P(\bar{B})} \\ \frac{(P(\bar{A})-\{1-P(\bar{B})\}+P(A\cap B))}{P(\bar{B})} = \frac{\left(\frac{1}{2}-\left(1-\frac{2}{3}\right)+\frac{1}{4}\right)}{\frac{2}{3}} = \left(\frac{5}{12}\times\frac{3}{2}\right) = 5/8 \end{array} $))) =			
21	$E_1 \rightarrow$ student knows the answer; $E_2 \rightarrow$ student guesses the answ A \rightarrow student answered it correctly	er			


	$P(E_1/A) = \frac{P(A/E_1) P(E_1)}{P(A/E_1)P(E_1) + P(A/E_2) P(E_2)}$
	$=\frac{1\times\frac{3}{4}}{1\times\frac{3}{4}+\frac{1}{4}\times\frac{1}{4}} = \frac{12}{13}$
	Assertion is true
	Reason is also true and it is the correct reason. So the answer is (a)
22	(a)
23	(d) Using the formula $\sum P_i = 1$, $\left(\frac{32}{k}\right) = 1$, k = 32.
24	(c) P(A) be the probability of getting even number is $3/6 = 1/2$ P(B) be the probability of getting spade is $13/52 = \frac{1}{4}$ P(A \cap B) = P(A) P(B) = $1/8$
25	
	$ \begin{bmatrix} (b) \\ x & 0 & 1 & 2 \\ P(x) & 25/36 & 10/36 & 1/36 \\ E(x) &= \sum x p(x) &= 12/36 &= 1/3 \end{bmatrix} $
26	(d) $\frac{4}{52} \times \frac{3}{51} \times \frac{2}{50} \times \frac{1}{49} = \frac{1}{270725}$

CASE BASED QUESTIONS


In a bilateral hockey series of two matches between the countries India and Germany the probabilities of India Winning, Losing and Drawing are $\frac{1}{2}$, $\frac{1}{5}$ and $\frac{3}{10}$ resply. Each win, draw and loss gives the points 2, 1, 0 respectively to the team. Let X and Y denote total points scored by India and Germany after two games series.

1

	(ii) B wi	ns the game, if A star	rts first.	
4.	soft toys, 10 ye		rane game. It has 12 blue soft toys, 8 red 5 green soft toys. Alina draws two soft eplacement.	
	and the second (ii). What is the and the second	ond is green. he probability that to ond is not yellow.	he first soft toy is blue he first soft toy is green	
5.			count. Also the word "offer" occurs in 10% of	I his
5.			ed e-mails are considered as spam. ﷺ ● Active ✓ ⑦ ֎	I his
5.	desired e-mails.	If 30% of the receiv	ed e-mails are considered as spam.	
5.	desired e-mails.	If 30% of the receiv	ed e-mails are considered as spam. 辛 ● Active ~ ⑦ ④ 1-50 of 5,521 〈 〉 ■	
5.	desired e-mails. Gmail Compose Categories	If 30% of the receiv Q Search in mail Image: Comparison of the receive	ed e-mails are considered as spam. Active \checkmark ② ③ 1-50 of 5,521 $\langle \rangle$ = Document from T. SELVAM - XII SAMPLE PAPER Se 6.pdf	····
5.	desired e-mails. Gmail Compose Categories Social Updates 2,569	If 30% of the receiv Q Search in mail □ - C : □ ☆ > me	ed e-mails are considered as spam. Image: Second State Image: Second State Document from T. SELVAM - XII SAMPLE PAPER Second State Document from T. SELVAM - XII SAMPLE PAPER Second State Image: Second State Secon	₩ • P 11
5.	desired e-mails.	If 30% of the receiv Q Search in mail □ - C : □ ☆ > me □ ☆ > me	ed e-mails are considered as spam.	
5.	desired e-mails.	If 30% of the receiv Q Search in mail \neg C : \Rightarrow me \Rightarrow me \Rightarrow me	ed e-mails are considered as spam. Active \checkmark ② ③ 1-50 of 5.521 $<$ \rightarrow = Document from T. SELVAM - XII SAMPLE PAPER 6.pdf Document from T. SELVAM - XII SAMPLE PAPER 13-2.pdf Document from T. SELVAM - CASE STUDY QUESTIONS FOR PRACTICE CLASS XII.pdf E-account statement for your SBI account(s) Dear Mr. SELVAM THANGAVELU, Y Se 18002973612731	
5.	desired e-mails.	If 30% of the receiv Q Search in mail □ - C : □ ☆ > me □ ☆ > me	ed e-mails are considered as spam.	<pre>pp 11 pp 11 pp 11 pp 11 </pre>

only 60% are of standard quality. One TV is selected at random. Based on the above information answer the following; (i) Find the probability that the selected TV is of standard quality. (ii) Find the probability that the TV is of standard quality, given that it was made by 1st plant. 9. In a survey at Vande Bharat Train, IRCTC asked passengers to rate and review the food served in train. IRCTC asked 500 passengers selected at random to rate food according to price (low, medium, or high) and food (1,2,3, or 4 stars). The results of this survey are presented in the two-way, or contingency, table below. The numbers in this table represent frequencies. For example, in the third row and fourth column, 30people rated the prices high and the food 4 stars. ** Price/ * *** **** Total rating Low 20 30 90 10 150 90 30 250 Medium 50 80 High 20 10 30 40 100 Total 90 120 210 80 500

(1) Find the probability that the passenger rates the prices medium?

- (2) Find the probability that the passenger rates the food 2 stars.
- (3) Suppose the passenger selected rates the price high. What is the probability that he rates the restaurant 1 star?
- (4) Suppose the passenger selected does not rate the food 4 stars.

. What is the probability that she rates the prices high?

10. Two friends A and B had gone for a shopping, and they came across a beautiful antique piece and both want to buy it. They asked shop keeper for another piece but not available in shop. Both of them decided to go to coffee shop to have coffee and toss a PAIR OF COINS, whosoever gets the pair of heads first will buy the antique piece, both shook hands and sat down for their luck , Answer the following if A starts

- (1) What is the probability of getting pair of heads?
- (2) What is the probability of getting only one head in a throw?
- (3) What is the probability that A gets pair of heads in third throw and wins the game?
- (4)What is the probability that B wins the game if A starts?
- (5) What is the probability that A buys the antique piece if A starts ?

11. During Examination, we need to reschedule on study hours and along with the study hours, we need quality revision of syllabus. In one such situation ,if X is a random variable which represents number of hours a student of class XII studied a particular subject per day, the probability distribution is given as,

P(X) 0 K 3K 4K 0	Х	0	1	2	3	>3
	P(X)	0	Κ	3K	4K	0

	 (1) What is the value of K? (2) The probability that less than two hours time is given to a subject per day is: (3) What is the probability that two hours or three hours of time is given to a subject per day? (4) What is the probability that 3 hours or more than three hours of time is given to a subject per day? 			
12.	A doctor is to visit a patient. From the past experience, it is known that the probabilities that he will come by cab, metro, bike or by other means of transport are respectively 0.3, 0.2, 0.35 and 0.1 if he comes by cab, metro, bike and other means of transport respectively.			
	(1) When the doctor arrives late, what is the probability that he comes by metro?			
	(2) When the doctor arrives late, what is the probability that he comes by cab?			
	(3) When the doctor arrives late, what is the probability that he comes by bike?			
13.	Suman was doing a project on a school survey, on the average number of hours spent on study by students selected at random. At the end of survey, Suman prepared the following report related to the data. Let X denotes the average number of hours spent on study by the students.			
	X 0 1 2 3 4 >4 P(X) 0.2 K x K x K (6-x) k(6-x) 0			

	 (1) Find the value of k? (2) What is the probability that the average study time is not more than 1 hour? (3) What is the probability that the average study time is atleast 3 hours? (4) What is the probability that the average study time is exactly 2 hours?
14.	Three persons A, B and C apply for manager post in a company ,the chances of selection is given by the ratio 1 : 2 : 4. The probability that if selected A , B and C can bring changes to improve profitability are 0.8, 0.5 and 0.3 respectively.
	ANSWERS
1.	(i) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $

	(iii) P(In	dia draw	s the serie	es) = P(X)	(= 2)	
		$= 2\left(\frac{1}{2} \times \frac{1}{5}\right) + \left(\frac{3}{10} \times \frac{3}{10}\right)$				
				(2)	,, (10 10)	
				=	$=\frac{29}{100}$	
2.						
2.	Ansv	ver : (i) P(A	A) = $\frac{4}{5}$, P(B)	$B) = \frac{3}{4}, P(C)$	$C) = \frac{2}{2}$	
			$B \cap C) =$	4	5	
					$\overline{B} \cap C$) + $P(\overline{A} \cap B \cap C)$	
		P(2	A) P(B) P(0	\overline{C}) + P(A)P	$P(\bar{B})P(C) + P(\bar{A}) P(B)P(C) = \frac{13}{30}$	
3.	Answer:					
		P(Win) =	$=\frac{1}{6}$, P(los	se) = $\frac{5}{6}$		
		(i) P(A v	$vins) = \frac{1}{6} + \frac{1}{6$	$-\frac{5}{6}\times\frac{5}{6}\times\frac{5}{6}$	$\frac{1}{6} + \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6} + \cdots \cdots$	•••••
			$=\frac{1}{6}\times$	$\frac{1}{1-\left(\frac{5}{6}\right)^2} =$	$\frac{6}{11}$	
	(ii)	P(R wir	$(1) = 1 - \frac{6}{11}$	5		
		. I (D WII	$(15) = 1 - \frac{1}{11}$	$-\frac{1}{11}$		
4.					at soft toy drawn is blue, red, y	yellow
	and gree	n respecti	vely.(with	out replac	cement)	
	В	R	Y	G	ΤΟΤΑ	
					L	
	12	8	10	5	35	
	(i) <i>P</i>	$(B \cap G) =$	= P(B)P	$\left(\frac{G}{B}\right) = \frac{12}{35}$	$\frac{5}{34} = \frac{6}{119}$	
	(ii) <i>P</i>	$(G \cap \overline{Y}) =$	= P(G).P	$\left(\frac{\overline{Y}}{G}\right) = \frac{5}{35}.$	$\frac{24}{34} = \frac{12}{119}$	
5.	$(i)E_1 \rightarrow c$	lesired m	ail; $E_2 \rightarrow b$	spam mai	il	
	$A \rightarrow sele$	cted mail	contains	the word	"offer"	
	$P(E_2/A)$	$=\frac{1}{P(A/F_{*})}$	$\frac{P(A/E_2)}{P(E_1) + I}$	$P(E_2)$ $P(A/F_2) P$	$\overline{\mathcal{O}(F_{a})}$	
		- (1/1)	$\frac{80}{80} \times \frac{30}{100}$	(1) [2] [<u>(-2)</u> 21	
		$=\frac{1}{80}$	$\frac{80}{100} \times \frac{30}{100}$ $\frac{30}{100} + \frac{10}{100}$	$\frac{1}{70} = \frac{1}{2}$	<u>24</u> 31	
		$\frac{30}{100} \times \frac{1}{2}$	100 + 100	$\times \frac{1}{100}$	-	

(ii)
(A) =
$$P(A/E_1)P(E_1) + P(A/E_2)P(E_2)$$

= $\frac{80}{100} \times \frac{30}{100} + \frac{10}{100} \times \frac{70}{100}$
= $\frac{31}{100}$
6. Answer:
(i) $\frac{1}{7} \times \frac{1}{5} = \frac{1}{35}$
(ii) $\frac{1}{7} \times \frac{1}{5} + \frac{1}{5} \times \frac{1}{5} = \frac{4}{55} + \frac{6}{35} = \frac{10}{35} = \frac{2}{7}$
(iii) $\frac{6}{7} \times \frac{4}{5} - \frac{24}{35}$
(iv) 1 - P(both will not be selected) = $1 - \frac{24}{35} = \frac{11}{35}$.
7. (i)
 $E_1 \rightarrow Organic pesticide; E_2 \rightarrow Chemical pesticide
 $A \rightarrow not having insects in the seed of the fruit
 $P(E_1/A) = \frac{P(A/E_1)P(E_1)}{P(A/E_1)P(E_1) + P(A/E_2)P(E_2)}$
 $= \frac{90}{100} \times \frac{70}{100} + \frac{80}{100} \times \frac{30}{100} = \frac{63}{87}$
(ii)
 $Let B \rightarrow having insects in the seed of the fruit
 $P(B) = P(B/E_1)P(E_1) + P(B/E_2)P(E_2)$
 $= \frac{10}{100} \times \frac{70}{100} + \frac{20}{100} \times \frac{30}{100}$
8. Answer :
 $E_1 = TV$ produced by first plant
 $E_2 = TV$ produced by second plant.
 $A = Manufactured TV of standard quality.$
 $P(E_1) = \frac{7}{10} \cdot P(E_2) = \frac{3}{10} \cdot P\left(\frac{A}{E_1}\right) = \frac{8}{10} \cdot P\left(\frac{A}{E_2}\right) = \frac{6}{10}$
(i) $P(A) = \frac{7}{100} \times \frac{8}{10} + \frac{3}{10} \times \frac{6}{100} = \frac{74}{100} = 0.74$
(ii) $P\left(\frac{E_1}{A}\right) = \frac{P(E_1)P(\frac{E_1}{E_1}) + P(E_2)P(E_2)}{P(E_1)(\frac{E_1}{E_1}) + P(E_1)P(\frac{E_1}{E_1})} = \frac{56}{74} = 0.756.$$$$

Number of passengers =500
 (1) P (Rating Medium) = 250/500 =1/2 (2) P(Rating 2 stars) = 12/500 (3) P (Rating one star/selecting the price high) = 20/100 P (price high /does not rating 4 stars) =60/420 (1) S = { HH,HT,TH,TT }
P(getting two heads) = $\frac{1}{4}$
(2) P (getting only one head in a throw) = $1/2$
(3) P (A getting pair of heads in third throw) = $\frac{3}{4} \times \frac{3}{4} \times \frac{1}{4} = \frac{9}{64}$
(4) Ans : $\frac{3}{7}$
(5)Ans: $\frac{4}{7}$
(1) We know $\therefore 0 + K + 3K + 4K + 0 = 1$
$8K=1, = \frac{1}{8}.$
(2) $P(X < 2) = P(X = 0) + P(X = 1)$
$=1K = \frac{1}{8}$
(3) P (X = 2) + P (X = 3) = 3K + 4K = 7K = $\frac{7}{8}$
(4)P(X=3) + P(X=4) = 4K + 0 = $\frac{4}{8}$
Let E be the event of coming late. A be the event of coming by cab. B be the event of coming by metro. C be the event of coming by other transport. P (A) = 3/10 P (B) = 2/10 P (C) = 1/10 P (D) = 4/10 P (E/A) = 25/100 P (E/B) = 3/10 P (E/C) = 35/100 P (E/D) = 1/10 (1) P (E/B) = $\frac{P(B)P(\frac{E}{B})}{P(A)P(\frac{E}{A})+P(B)P(\frac{E}{B})+P(C)P(\frac{E}{C})+P(D)P(\frac{E}{D})}$ $= \left(\frac{6/100}{\left(\frac{15}{200} + \frac{6}{100} + \frac{7}{200} + \frac{4}{100}\right)}\right) = \frac{6 \times 2}{42} = 2/7$ (2) ANSWER : $\frac{5}{14}$ (3) ANSWER : $\frac{1}{6}$

13.	
	P(X) 0.2 k 2k 3k 2k 0
	(1) Using $\sum P(x) = 1$, $8k = 1 - 0.2$
	8k = 0.8 , $k = 1/10$
	(2) Probability of study time NOT more than one ; $P(X=0) + P(X=1)$
	2/10 + 1/10 = 3/10
	(3) $P(X=3) + P(X=4) + P(X>4) = \frac{5}{10}$
	(4) P(X=2) = $\frac{1}{5}$
	(5) $P(X=1) + P(X=2) + P(X=3) + P(X=4) + P(X>4) = 1 - P(X=0)$ = 1- 0.2 =0.8
14.	Let the events be described as below : A: No change takes place E1: Person A gets appointed E2: Person B gets appointed E3: Person C gets appointed. The chances of selection of A, B and C are in the ratio 1: 2: 4 . Hence, P(E1)=1/7, P(E2)=2/7, P(E3)=4/7
	Probabilities of A,B and C introducing changes to improve profits of company are 0.8,0.5 and 0.3 respectively. Hence probability of no changes on appointment of A,B and C are 0.2,0.5 and 0.7 respectively.
	Hence, $P(A E1)=0.2=2/10$
	P(A E2)=0.5= 5/10
	P(A E3)=0.7= 7/10
	(1). the required probability is
	$P(E_3/A) = \left(\frac{P(E_3)P(\frac{A}{E_3})}{\sum_{1}^{3} \left(P(E_i) \times P(\frac{A}{E_i})\right)}\right) = \frac{\frac{28}{70}}{\left(\frac{2}{70} + \frac{10}{70} + \frac{28}{70}\right)} = 28/40$
	= 7/10
	\therefore if no change takes place, the probability that it is due to appointment of C is 7/10
	(2) E : Change takes place
	$P\left(\left(\frac{E_2}{E}\right) = \frac{P(E_2)P\left(\frac{E}{E_3}\right)}{\sum_{1}^{3} \left(P(E_i) \times P\left(\frac{E}{E_i}\right)\right)} = \left(\frac{\frac{2}{7} \times 5/10}{\left(\frac{8}{70} + \frac{10}{70} + \frac{12}{70}\right)}\right) = 10/30 = 1/3$